【題目】如圖,矩形中,對角線,交于點,以,為鄰邊作平行四邊形,連接.
(1)求證:四邊形是菱形;
(2)若,,求四邊形的面積.
【答案】(1)證明見解析;(2).
【解析】
(1)先證明四邊形AOBE是平行四邊形,再證明AB⊥OE即可;
(2)根據(jù)∠EAO+∠DCO=180°,以及矩形性質(zhì)可求得∠EAO=120°,求出△AEO面積,利用四邊形ADOE的面積等于△AEO面積的2倍即可求解.
(1)∵四邊形ABCD是矩形,
∴DO=BO.
∵四邊形ADOE是平行四邊形,
∴AE∥DO,AE=DO,AD∥OE.
∴AE∥BO,AE=BO,
∴四邊形AOBE是平行四邊形.
∵AD⊥AB,AD∥OE,
∴AB⊥OE.
∴四邊形AOBE是菱形;
(2)設(shè)AB與EO交點為M.
∵AB∥CD,
∴∠DCO=∠BAO.
∵四邊形AOBE是菱形,
∴∠EAO=2∠BAO.
∵∠EAO+∠DCO=180°,
∴∠EAO=120°,∠EAM=60°.
又AM=AB=,
∴BM=,
∴MO=,
∴EO=
∴△AEO面積為:,
∴四邊形ADOE面積=
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O是矩形ABCD的中心,E是AB上的點,沿CE折疊后,點B恰好與點O重合,若BC=3,則折痕CE的長為( )
A. B. C. D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到;②點O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO;⑤S△AOC+S△AOB=.其中正確的結(jié)論是( 。
A.①②③⑤B.①②③④C.①②③④⑤D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點O與坐標(biāo)原點重合,點C的坐標(biāo)為(0,3),點A在x軸的正半軸上,直線y=x﹣1交邊AB、OA于點D、M,反比例函數(shù)的圖象經(jīng)過點D,與BC的交點為N.
(1)求BN的長.
(2)點P是直線DM上的動點(點P不與點D、點M重合),連接PB、PC、MN,當(dāng)△BCP的面積等于四邊形ABNM的面積時,求點P的坐標(biāo).
(3)在(2)的條件下,連接CP,以CP為邊作矩形CPEF,使矩形的對角線的交點G落在直線DM上,請寫出點G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與軸交于點,與x軸負半軸交于B,與正半軸交于點,且.
(1)求該二次函數(shù)解析式;
(2)若是線段上一動點,作,交于點,連結(jié)當(dāng)面積最大時,求點的坐標(biāo);
(3)若點為軸上方的拋物線上的一個動點,連接,設(shè)所得的面積為.問:是否存在一個的值,使得相應(yīng)的點有且只有個,若有,求出這個的值,并求此時點的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與、軸交于、、三點,其中,拋物線的頂點為.
(1)求的值及頂點的坐標(biāo);
(2)如圖1,若動點在第一象限內(nèi)的拋物線上,動點在對稱軸上,當(dāng),且時,求此時點的坐標(biāo);
(3)如圖2,若點是二次函數(shù)圖像上對稱軸右側(cè)一點,設(shè)點到直線的距離為,到拋物線的對稱軸的距離為,當(dāng)時,請求出點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場按定價銷售某種商品時,每件可獲利100元;按定價的八折銷售該商品5件與將定價降低50元銷售該商品6件所獲利潤相等.
(1)該商品進價、定價分別是多少?
(2)該商場用10000元的總金額購進該商品,并在五一節(jié)期間以定價的七折優(yōu)惠全部售出,在每售出一件該商品時,均捐獻元給社會福利事業(yè),該商場為能獲得不低于3000元的利潤,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某建筑物BC頂部有一旗桿AB,且點A、B、C在同一條直線上,小紅在D處觀測旗桿頂部A的仰角為47°,觀測旗桿底部B的仰角為42°已知點D到地面的距離DE為1.56m,EC=21m,求旗桿AB的高度和建筑物BC的高度(結(jié)果精確到0.1m).參考數(shù)據(jù):sin47°≈0.73,cos47°≈0.68,tan47°≈1.07,sin42°≈0.67,cos42°≈0.74,tan42°≈0.90.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的個數(shù)是( )
①為了了解一批燈泡的使用壽命,應(yīng)采用全面調(diào)查的方式
②一組數(shù)據(jù)5,6,7,6, 8,10的眾數(shù)和中位數(shù)都是6
③已知關(guān)于x的一元二次方程(x+1)2﹣m=0有兩個實數(shù)根,則m的取值范圍是m≥0
④式子有意義的條件是
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com