已知四邊形ABCD中.E、F分別是AB、AD邊上的點,DE與CF交于點G。
(一)問題初探;
如圖①,若四邊形ABCD是正方形,且DE上CF.則DE與’CF的數(shù)量關(guān)系是
;
(二)類比延伸
(1)如圖②若四邊形ABCD是矩形.AB=m, AD=n.且DE⊥CF,則= .(用含m,n的代數(shù)式表示)
(2)如圖③,若四邊形ABCD是平行四邊形,當(dāng)∠B+∠EGC=180°時,(1)中的結(jié)論是否成立,若成立,請證明你的結(jié)論;若不成立,請說明理由.
(三)拓展探究
如圖④,若BA= BC= 6,DA= DC= 8,∠BAD= 90°.DE⊥CF,請直接寫出的值.
科目:初中數(shù)學(xué) 來源: 題型:
如圖①,南京中山陵的臺階拾級而上被分成坡度不等的兩部分.圖②是臺階的側(cè)面圖,若斜坡BC長為120 m,在C處看B處的仰角為25°;斜坡AB長70 m,在A處看B處的俯角為50°,試求出陵墓的垂直高度AE的長.
(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)
| |||
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在Rt△ABC中,∠ABC= 90°,以AB為直徑的⊙O與AC邊交與點D.過D作⊙O的切線交BC與點E.連接OE.
(1)證明:OE∥AC;
(2)①當(dāng)∠BAC= °時,四邊形ODEB是正方形;
②當(dāng)∠BAC= °時,AD=3DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,四邊形ABCD中,∠C=50°,∠B=∠D=90°,E、F分別是BC、DC上的點,當(dāng)△AEF的周長最小時,∠EAF的度數(shù)為( 。
| A. | 50° | B. | 60° | C. | 70° | D. | 80° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖是小明設(shè)計用手電來測量都勻南沙州古城墻高度的示意圖,點P處放一水平的平面鏡,光線從點A出發(fā)經(jīng)過平面鏡反射后剛好射到古城墻CD的頂端C處,已知AB⊥BD,CD⊥BD,且測得AB=1.2米,BP=1.8米,PD=12米,那么該古城墻的高度是 米(平面鏡的厚度忽略不計).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com