如圖,在Rt△ABC中,∠ABC= 90°,以AB為直徑的⊙O與AC邊交與點(diǎn)D.過D作⊙O的切線交BC與點(diǎn)E.連接OE.   

    (1)證明:OE∥AC;

    (2)①當(dāng)∠BAC=     °時(shí),四邊形ODEB是正方形;

  ②當(dāng)∠BAC=     °時(shí),AD=3DE.


 (1)連接OD∵DE是⊙O的切線,D是切點(diǎn)∴OD⊥DE

    ∴∠ODE=∠OBE= 90°  ∵OD=OB,OE=OE  ∴Rt△ODF≌Rt△OBE

   ∴∠DOE=∠EOB  ∵∠A=∠BOD ∴∠A=∠EOE

  ∴OE∥AC……5分    (2)①45,……7分②30…………9分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


黃巖島是我國(guó)南沙群島的一個(gè)小島,漁產(chǎn)豐富.一天某漁船離開港口前往該海域捕魚.捕撈一段時(shí)間后,發(fā)現(xiàn)一外國(guó)艦艇進(jìn)入我國(guó)水域向黃巖島駛來,漁船向漁政部門報(bào)告,并立即返航.漁政船接到報(bào)告后,立即從該港口出發(fā)趕往黃巖島.下圖是漁政船及漁船與港口的距離S和漁船離開港口的時(shí)間t之間的函數(shù)圖象.(假設(shè)漁船與漁政船沿同一航線航行)

(1)直接寫出漁船離港口的距離S和它離開港口的 時(shí)間t的函數(shù)關(guān)系式.

(2)求漁船和漁政船相遇時(shí),兩船與黃巖島的距離.

(3)在漁政船駛往黃巖島的過程中,求漁船從港口出發(fā)經(jīng)過多長(zhǎng)時(shí)間與漁政船相距30海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,△ABC與△DEF均為等邊三角形,⊙O是△ABC的內(nèi)切圓,同時(shí)也是△DEF的外接圓.若AB=1cm,則DE    cm.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列計(jì)算正確的是

  A. 3a-2a=l       B. a2 +a5 =a7         C. (ab)3一ab3     D. a2· a4 =a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知關(guān)于x的一元二次方程mx2+2x-l=0(m為常數(shù))有兩個(gè)不相等的實(shí)數(shù)根,則

  m的取值范圍是                         

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知四邊形ABCD中.E、F分別是AB、AD邊上的點(diǎn),DE與CF交于點(diǎn)G。

   (一)問題初探;  

如圖①,若四邊形ABCD是正方形,且DE上CF.則DE與’CF的數(shù)量關(guān)系是   

                  

    (二)類比延伸

    (1)如圖②若四邊形ABCD是矩形.AB=m, AD=n.且DE⊥CF,則=           .(用含m,n的代數(shù)式表示)

    (2)如圖③,若四邊形ABCD是平行四邊形,當(dāng)∠B+∠EGC=180°時(shí),(1)中的結(jié)論是否成立,若成立,請(qǐng)證明你的結(jié)論;若不成立,請(qǐng)說明理由.

    (三)拓展探究

如圖④,若BA= BC= 6,DA= DC= 8,∠BAD= 90°.DE⊥CF,請(qǐng)直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列幾何體的主視圖與其他三個(gè)不同的是( 。

 

A.

B.

C.

D.

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


遵義市某中學(xué)為了搞好“創(chuàng)建全國(guó)文明城市”的宣傳活動(dòng),對(duì)本校部分學(xué)生(隨機(jī)抽查)進(jìn)行了一次相關(guān)知識(shí)了解程度的調(diào)查測(cè)試(成績(jī)分為A、B、C、D、E五個(gè)組,x表示測(cè)試成績(jī)).通過對(duì)測(cè)試成績(jī)的分析,得到如圖所示的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息解答以下問題:

(1)參加調(diào)查測(cè)試的學(xué)生為      人;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)本次調(diào)查測(cè)試成績(jī)中的中位數(shù)落在      組內(nèi);

(4)若測(cè)試成績(jī)?cè)?0分以上(含80分)為優(yōu)秀,該中學(xué)共有學(xué)生2600人,請(qǐng)你根據(jù)樣本數(shù)據(jù)估計(jì)全校學(xué)生測(cè)試成績(jī)?yōu)閮?yōu)秀的總?cè)藬?shù).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,直線l外不重合的兩點(diǎn)A、B,在直線l上求作一點(diǎn)C,使得AC+BC的長(zhǎng)度最短,作法為:①作點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)B′;②連接AB′與直線l相交于點(diǎn)C,則點(diǎn)C為所求作的點(diǎn).在解決這個(gè)問題時(shí)沒有運(yùn)用到的知識(shí)或方法是(  )

 

A.

轉(zhuǎn)化思想

 

B.

三角形的兩邊之和大于第三邊

 

C.

兩點(diǎn)之間,線段最短

 

D.

三角形的一個(gè)外角大于與它不相鄰的任意一個(gè)內(nèi)角

 

查看答案和解析>>

同步練習(xí)冊(cè)答案