【題目】(1)填空21202( ); 22212( ) ;23 222( )

(2)請用字母表示第n個等式,并驗證你的發(fā)現(xiàn).

(3)利用(2)中你的發(fā)現(xiàn),求202122232201622017的值.

【答案】10,1,2;(2)證明見解析;3

【解析】試題分析:(1)根據(jù)0次冪的意義和乘方的意義進行計算即可

(2)觀察各等式得到2的相鄰兩個非負整數(shù)冪的差等于其中較小的2的非負整數(shù)冪,即2n-2n-1=2n-1(n為正整數(shù));

(3)由于21-20=20,22-21=21,23-22=22,…22018-22017=22017,然后把等式左邊與左邊相加,右邊與右邊相加即可求解.

試題解析:(1)21-20=1=20;22-21=2=21;23-22=4=22,

故答案為:0,1,2;

(2)觀察可得:2n-2n-1=2n-1(n為正整數(shù)),證明如下:

2n-2n-1=2×2n-1-2n-1=2n-1×(2-1)=2n-1;

(3)∵21-20=20

22-21=21,

23-22=22,

22018-22017=22017,

∴22018-20=20+21+22+23+…+22016+22017

∴20+21+22+23+…+22016+22017的值為22018-1.

型】解答
結(jié)束】
27

【題目】(1) 如圖1,MA1NA2,則∠A1+A2=_________度.

如圖2,MA1NA3,則∠A1+A2+A3=_________ 度.

如圖3,MA1NA4,則∠A1+A2+A3+A4=_________度.

如圖4,MA1NA5,則∠A1+A2+A3+A4+A5=_________度.

如圖5,MA1NAn,則∠A1+A2+A3+…+An=_________ 度.

(2) 如圖,已知AB∥CD,∠ABE∠CDE的平分線相交于F,∠E=80°,求∠BFD的度數(shù).

【答案】(1) 180; 360; 540;720;180(n-1);(2)140°.

【解析】試題分析:(1)首先過各點作MA 1 的平行線,由MA 1 ∥NA 2 ,可得各線平行,根據(jù)兩直線平行,同旁內(nèi)角互補,即可求得答案;

(2)(1)中的規(guī)律可得∠ABE+∠E+∠CDE=360°,所以∠ABE+∠CDE=360°-80°=280°,又因為BF、DF平分∠ABE和∠CDE,所以∠FBE+∠FDE=140°,又因為四邊形的內(nèi)角和為360°,進而可得答案.

試題解析:(1)如圖1,

∵MA 1 ∥NA 2 ,

∴∠A 1 +∠A 2 =180°.

如圖2,過點A 2 A 2 C 1 ∥A 1 M,

∵MA 1 ∥NA 3 ,

∴A 2 C 1 ∥A 1 M∥NA 3 ,

∴∠A 1 +∠A 1 A 2 C 1 =180°,∠C 1 A 2 A 3 +∠A 3 =180°,

∴∠A 1 +∠A 2 +∠A 3 =360°.

如圖3,過點A 2 A 2 C 1 ∥A 1 M,過點A 3 A 3 C 2 ∥A 1 M,

∵MA 1 ∥NA 3 ,

∴A 2 C 1 ∥A 3 C 2 ∥A 1 M∥NA 3

∴∠A 1 +∠A 1 A 2 C 1 =180°,∠C 1 A 2 A 3 +∠A 2 A 3 C 2 =180°,∠C 2 A 3 A 4 +∠A 4 =180°,

∴∠A 1 +∠A 2 +∠A 3 +∠A 4 =540°.

如圖4,過點A 2 A 2 C 1 ∥A 1 M,過點A 3 A 3 C 2 ∥A 1 M,

∵MA 1 ∥NA 3 ,

∴A 2 C 1 ∥A 3 C 2 ∥A 1 M∥NA 3 ,

∴∠A 1 +∠A 1 A 2 C 1 =180°,∠C 1 A 2 A 3 +∠A 2 A 3 C 2 =180°,∠C 2 A 3 A 4 +∠A 3 A 4 C 3 =180°,∠C 3 A 4 A 5 +∠A 5 =180°,

∴∠A 1 +∠A 2 +∠A 3 +∠A 4 +∠A 5 =720°;

從上述結(jié)論中你發(fā)現(xiàn)了規(guī)律:如圖5,MA 1 ∥NA n ,則∠A 1 +∠A 2 +∠A 3 +…+∠A n =180(n-1)度,

故答案為:180,360,540,720,180(n-1);

(2)由(1)可得∠ABE+∠E+∠CDE=360°,

∵∠E=80°,

∴∠ABE+∠CDE=360°-80°=280°,

又∵BF、DF平分∠ABE和∠CDE,

∴∠FBE+∠FDE=140°,

∵∠FBE+∠E+∠FDE+∠BFD=360°,

∴∠BFD=360°-80°-140°=140°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC是等邊三角形.

(1)如圖,點DAB邊上,點EAC邊上,BDCE,BECD交于點F試判斷BFCF的數(shù)量關(guān)系,并加以證明;

(2)點DAB邊上的一個動點,點EAC邊上的一個動點,且BDCEBECD交于點F.若△BFD是等腰三角形,求∠FBD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下列條件中,不能證明△ABD≌△ACD的是( )

A. BD=DC ,AB=AC B. ∠ADB=∠ADC,∠BAD=∠CAD

C. ∠B=∠C, BD=DC D. ∠B=∠C ,∠BAD=∠CAD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列選項中,比﹣3℃低的溫度是(  )

A.4B.2C.1D.0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將ABC經(jīng)過一次平移后得到A′B′C′,圖中標出了點B的對應(yīng)點B′.

(1)在給定方格紙中畫出平移后的A′B′C′;

利用網(wǎng)格點和三角板畫圖或計算:

(2)畫出AB邊上的中線CD;

(3)畫出BC邊上的高線AE;

(4)A′B′C′的面積為______.

【答案】(1)作圖見解析;(2)作圖見解析;(3)作圖見解析;(4)8.

【解析】:(1)如圖所示: 即為所求;

(2)如圖所示:CD就是所求的中線;

(3)如圖所示:AE即為BC邊上的高;

(4).

的面積為8.

因此,本題正確答案是:8.

型】解答
結(jié)束】
24

【題目】如圖,⊿ABC中,∠A=40°,ACB=104°BDAC邊上的高,BE是⊿ABC的角平分線,求∠EBD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】種植草莓大戶張華現(xiàn)有22噸草莓等待出售,有兩種銷售渠道,一是運往省城直接批發(fā)給零售商,二是在本地市場零售,受客觀因素影響,張華每天只能采用一種銷售渠道,而且草莓必須在10天內(nèi)售出(含10天)經(jīng)過調(diào)查分析,這兩種銷售渠道每天銷量及每噸所獲純利潤見右表

1若一部分草莓運往省城批發(fā)給零售商其余在本地市場零售,請寫出銷售22噸草莓所獲純利潤y(元)與運往省城直接批發(fā)零售商的草莓量x(噸)之間的函數(shù)關(guān)系式

2)怎樣安排這22噸草莓的銷售渠道,才使張華所獲純利潤最大?并求出最大純利潤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國西南五省市的部分地區(qū)發(fā)生嚴重旱災為鼓勵節(jié)約用水,某市自來水公司采取分段收費標準右圖反映的是每月收取水費y與用水量x之間的函數(shù)關(guān)系

1)小明家五月份用水8,應(yīng)交水費______

2)按上述分段收費標準,小明家三、四月份分別交水費26元和18,問四月份比三月份節(jié)約用水多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知2A型車和1B型車載滿貨物一次可運貨10.1A型車和2B型車載滿貨物一次可運貨11.某物流公司現(xiàn)有31噸貨物,計劃同時租用A型車a輛和B型車b,一次運完,且每輛車都滿載貨物.根據(jù)以上信息解答下列問題:

11A型車和1B型車載滿貨物一次分別可運貨物多少噸?

2請幫助物流公司設(shè)計租車方案

3A型車每輛車租金每次100元,B型車每輛車租金每次120.請選出最省錢的租車方案,并求出最少的租車費.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各點中,在第一象限的點是(

A.2,3B.(-2,-3C.(-2,3D.2,-3

查看答案和解析>>

同步練習冊答案