【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)y4x4與x軸,y軸分別交于點(diǎn)A,B,點(diǎn)A在拋物線(xiàn)yax2bx3a(a0)上,將點(diǎn)B向右平移3個(gè)單位長(zhǎng)度,得到點(diǎn)C.
(1)拋物線(xiàn)的頂點(diǎn)坐標(biāo)為 (用含a的代數(shù)式表示)
(2)若a1,當(dāng)t-1≤x≤t時(shí),函數(shù)yax2bx3a(a0)的最大值為y1,最小值為y2,且y1y22,求t的值;
(3)若拋物線(xiàn)與線(xiàn)段BC恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.
【答案】(1);(2)或;(3)或時(shí),拋物線(xiàn)與線(xiàn)段有一個(gè)交點(diǎn).
【解析】
(1)將A(-1,0)代入拋物線(xiàn)得b=-2a,再將拋物線(xiàn)解析式化為頂點(diǎn)式即可求解;
(2)當(dāng)a=-1時(shí),拋物線(xiàn)頂點(diǎn)坐標(biāo)為(1,4),然后分情況根據(jù)拋物線(xiàn)的性質(zhì)即可解答;
(3)先求點(diǎn)B坐標(biāo),將點(diǎn)B向右平移3個(gè)單位長(zhǎng)度,得到點(diǎn)C,利用拋物線(xiàn)的頂點(diǎn)坐標(biāo)求解.
解:(1)直線(xiàn)y=4x+4與x軸,y軸分別交于點(diǎn)A,B,
∴A(-1,0),B(0,4),
點(diǎn)A在拋物線(xiàn)y=ax2+bx-3a(a<0)上,
∴b=-2a,
∴拋物線(xiàn)y=ax2+bx-3a=a(x-1)2-4a,
∴拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(1,-4a).
故答案為:;
(2)∵,
∴拋物線(xiàn)的解析式為.
①當(dāng)時(shí),
,
∴.
②當(dāng)時(shí),即時(shí),.
∴.
③當(dāng)時(shí),.
解得,(舍去).
④當(dāng)時(shí),.
解得,(舍去).
∴或.
(3)①把代入拋物線(xiàn),得.
∵拋物線(xiàn)與線(xiàn)段只有一個(gè)公共點(diǎn),
∴.
∴.
②當(dāng)拋物線(xiàn)頂點(diǎn)在線(xiàn)段上時(shí),則頂點(diǎn)坐標(biāo)為.
∴.
∴.
∴或時(shí),拋物線(xiàn)與線(xiàn)段有一個(gè)交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 鄭州外國(guó)語(yǔ)中學(xué)為了解學(xué)生課下閱讀所用時(shí)間的情況,從各年級(jí)學(xué)生中隨機(jī)抽查了一部分學(xué)生進(jìn)行統(tǒng)計(jì),下面是針對(duì)此次統(tǒng)計(jì)所制作的不完整的頻數(shù)分布表和頻數(shù)分布直方圖,請(qǐng)根據(jù)圖表信息回答下列問(wèn)題:
組別 | 時(shí)間段(小時(shí)) | 頻數(shù) | 頻率 |
1 | 0≤x<0.5 | 10 | 0.05 |
2 | 0.5≤x<1.0 | 20 | 0.10 |
3 | 1.0≤x<1.5 | 80 | b |
4 | 1.5≤x<2.0 | a | 0.35 |
5 | 2.0≤x<2.5 | 12 | 0.06 |
6 | 2.5≤x<3.0 | 8 | 0.04 |
(1)表中a=______b=______;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)樣本中,學(xué)生日閱讀所用時(shí)間的中位數(shù)落在第______組;
(4)該校共有學(xué)生3000人,請(qǐng)估計(jì)學(xué)生日閱讀量不少于1.5小時(shí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在矩形中,,分別是邊,上的點(diǎn),過(guò)點(diǎn)作的垂線(xiàn)交于點(diǎn),以為直徑作半圓.
(1)填空:點(diǎn)_____________(填“在”或“不在”)上;當(dāng)時(shí),的值是_____________;
(2)如圖1,在中,當(dāng)時(shí),求證:;
(3)如圖2,當(dāng)的頂點(diǎn)是邊的中點(diǎn)時(shí),請(qǐng)直接寫(xiě)出三條線(xiàn)段的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】茶葉是安徽省主要經(jīng)濟(jì)作物之一,2020年新茶上市期間,某茶廠為獲得最大利益,根據(jù)市場(chǎng)行情,把新茶價(jià)格定為400元/kg,并根據(jù)歷年的相關(guān)數(shù)據(jù)整理出第x天(1≤x≤15,且x為整數(shù))制茶成本(含采摘和加工)和制茶量的相關(guān)信息如下表.假定該茶廠每天制作和銷(xiāo)售的新茶沒(méi)有損失,且能在當(dāng)天全部售出(當(dāng)天收入=日銷(xiāo)售額-日制茶成本)
制茶成本(元/kg) | 150+10x |
制茶量(kg) | 40+4x |
(1)求出該茶廠第10天的收入;
(2)設(shè)該茶廠第x天的收入為y(元).試求出y與x之間的函數(shù)關(guān)系式,并求出y的最大值及此時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,E為CD邊上一點(diǎn),∠DAE=30°,M為AE的中點(diǎn),過(guò)點(diǎn)M作直線(xiàn)分別與AD、BC相交于點(diǎn)P、Q.若PQ=AE,則AP等于 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,BC的延長(zhǎng)線(xiàn)與⊙O的切線(xiàn)AF交于點(diǎn)F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE,AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),將四邊形沿直線(xiàn)折疊,得到四邊形,點(diǎn)、的對(duì)應(yīng)點(diǎn)分別為點(diǎn)、.直線(xiàn)交于點(diǎn).
(1)求證:;
(2)連接,已知.
①如圖①,當(dāng),時(shí),求的長(zhǎng)度;
②如圖②,當(dāng)四邊形為菱形時(shí),請(qǐng)直接寫(xiě)出的長(zhǎng)度.
圖① 圖②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 有一種用“☆”定義的新運(yùn)算,對(duì)于任意實(shí)數(shù)a,b,都有a☆b=b2+2a+1.例如7☆4=42+2×7+1=31.
(1)已知﹣m☆3的結(jié)果是﹣4,則m= .
(2)將兩個(gè)實(shí)數(shù)2n和n﹣2用這種新定義“☆”加以運(yùn)算,結(jié)果為9,則n的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一個(gè)函數(shù),自變量x取a時(shí),函數(shù)值y也等于a,我們稱(chēng)a為這個(gè)函數(shù)的不動(dòng)點(diǎn).如果二次函數(shù)y=x2+2x+c有兩個(gè)相異的不動(dòng)點(diǎn)x1、x2,且x1<1<x2,則c的取值范圍是( )
A. c<﹣3B. c<﹣2C. c<D. c<1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com