【題目】如圖,一段拋物線:y=﹣xx4)(0≤x≤4)記為C1,它與x軸交于兩點OA1;將C1A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2A2旋轉(zhuǎn)180°得到C3,交x軸于A3;如此變換進行下去,若點P17,m)在這種連續(xù)變換的圖象上,則m的值為(

A.2B.2C.3D.3

【答案】D

【解析】

根據(jù)題意和題目中的函數(shù)解析式,可以得到點A1的坐標,從而可以求得OA1的長度,然后根據(jù)題意,即可得到點P17,m)中m的值和x1時對應(yīng)的函數(shù)值相等,即可得答案.

y=﹣xx4)(0≤x≤4)記為C1,它與x軸交于兩點O,A1

∴點A14,0),

OA14,

OA1A1A2A2A3A3A4……

OA1A1A2A2A3A3A4……4,

∵點P17,m)在這種連續(xù)變換的圖象上,17÷4=4……1,

∴點P17,m)在C5上,

x17x1時的函數(shù)值相等,

m=﹣14)=﹣(﹣3)=3,

故選D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,四邊形OABC為矩形,點A,B的坐標分別為(4,0),(4,3),動點M,N分別從O,B同時出發(fā).以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點M作MPOA,交AC于P,連接NP,已知動點運動了x秒.

(1)求P點的坐標(用含x的代數(shù)式表示);

(2)試求NPC面積S的表達式,并求出面積S的最大值及相應(yīng)的x值;

(3)設(shè)四邊形OMPC的面積為S1,四邊形ABNP的面積為S2,請你就x的取值范圍討論S1與S2的大小關(guān)系并說明理由;

(4)當x為何值時,NPC是一個等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD,對角線AC、BD交于點O,線段OEOF,且與邊AD、AB交于點E、F

1)求證:OEOF;

2)連接EF,交AC于點H,若HFAF2,求OHEF

3)若E、F分別在DA、AB延長線上,OEAB交于點M,若MOF∽△EAFAF1,求正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在一個不透明的口袋中有4個形狀、大小、材質(zhì)完全相同的球,其中1個紅色球,3個黃色球.

(1)從口袋中隨機取出一個球(不放回),接著再取出一個球,請用樹形圖或列表的方法求取出的兩個球一個是紅色球,一個是黃色球的概率;

(2)小明往該口袋中又放入m個紅色球和(m+2)個黃色球,再從口袋中隨機取出一個球,這個球是黃色球的概率為,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫的岸堤(岸堤足夠長)為一邊,用總長為80m的圍網(wǎng)在水庫中圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等.設(shè)BC的長度為xm,矩形區(qū)域ABCD的面積為ym2

1)求AE的長(用x的代數(shù)式表示)

2)當y=108m2時,求x的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠BAC120°,點OBC上,⊙O經(jīng)過點A,點C,且交BC于點D,直徑EFAC于點G

1)求證:AB是⊙O的切線;

2)若AC8,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BCAC,圓心OAC上,點M與點C分別是AC與⊙O的交點,點DMB與⊙O的交點,點PAD延長線與BC的交點,且ADAOAMAP

1)連接OP,證明:△ADM∽△APO

2)證明:PDΘO的切線;

3)若AD24,AMMC,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小區(qū)業(yè)主委員會決定把一塊長50,寬30的矩形空地建成健身廣場,設(shè)計方案如圖所示,陰影區(qū)域為綠化區(qū)(四塊綠化區(qū)為全等的矩形),空白區(qū)域為活動區(qū),且四周的4個出口寬度相同,其寬度不小于14,不大于26,設(shè)綠化區(qū)較長邊為,活動區(qū)的面積為

1)直接寫出:

①用的式子表示出口的寬度為_________;

的函數(shù)關(guān)系式及的取值范圍__________________;

2)若活動區(qū)造價為50/,綠化區(qū)造價為40/,則綠化區(qū)邊長怎么設(shè)計,健身廣場投資費用最少,并求出最少費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax2+bx+c過點A0,2),且拋物線上任意不同兩點Mx1,y1),Nx2,y2)都滿足;當x1x20時(x1x2)(y1y2)>0;當0x1x2時,(x1x2)(y1y2)<0.以原點O為圓心,OA為半徑的圓與拋物線的另兩個交點為B、C,且BC的左側(cè),ABC有一個內(nèi)角為60°.則拋物線的解析式是__

查看答案和解析>>

同步練習冊答案