【題目】如圖,四邊形ABCD是平行四邊形,E、F是對角線BD上的點,∠1=∠2.
(1)求證:BE=DF;
(2)求證:AF∥CE.

【答案】
(1)證明:∵四邊形ABCD是平行四邊形,

∴AB=CD,AB∥CD,

∴∠5=∠3,

∵∠1=∠2,

∴∠AEB=∠4,

在△ABE和△CDF中,

,

∴△ABE≌△CDF(AAS),

∴BE=DF


(2)證明:由(1)得△ABE≌△CDF,

∴AE=CF,

∵∠1=∠2,

∴AE∥CF,

∴四邊形AECF是平行四邊形,

∴AF∥CE


【解析】(1)利用平行四邊形的性質(zhì)得出∠5=∠3,∠AEB=∠4,進而利用全等三角形的判定得出即可;(2)利用全等三角形的性質(zhì)得出AE=CF,進而得出四邊形AECF是平行四邊形,即可得出答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCABC中,AB=AB′,B=B,補充條件后仍不一定能保證ABC≌△ABC,則補充的這個條件是(

A. BC=BC B. A=∠A C. AC=AC D. C=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=13,AC=5,BC邊上的中線AD=6,點EAD的延長線上,且AD=DE

(1)試判斷△ABE的形狀并說明理由;

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)成為現(xiàn)代人的時尚,某市有關(guān)部門統(tǒng)計了最近6個月到圖書館的讀者的職業(yè)分布情況,并做了下列兩個不完整的統(tǒng)計圖.
(1)在統(tǒng)計的這段時間內(nèi),共有萬人次到圖書館閱讀,其中商人占百分比為%;
(2)將條形統(tǒng)計圖補充完整;
(3)若5月份到圖書館的讀者共28000人次,估計其中約有多少人次讀者是職工?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB,BC,CD分別與⊙O相切于E,F(xiàn),G.且AB∥CD.BO=6cm,CO=8cm.
(1)求證:BO⊥CO;
(2)求BE和CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)圖象的頂點在原點O,經(jīng)過點A(1, );點F(0,1)在y軸上.直線y=﹣1與y軸交于點H.

(1)求二次函數(shù)的解析式;
(2)點P是(1)中圖象上的點,過點P作x軸的垂線與直線y=﹣1交于點M,求證:FM平分∠OFP;
(3)當(dāng)△FPM是等邊三角形時,求P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,AB∥CD,點E、F在線段BD上,且BE=DF,連接AE、CF.

(1)指出線段AE與CF的關(guān)系,并說明理由;

(2)若將題中的條件“點E、F在線段BD上”改為“點E、F在直線BD上” ,那么(1)中的結(jié)論還一定能成立嗎?若能,直接寫出結(jié)論;若不能,請舉出反例加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由點P(14,1),A(a,0),B(0,a)確定的△PAB的面積為18.

(1)如圖,若0<a<14,求a的值.

(2)如果a>14,請畫圖并求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進某種茶壺、茶杯共200個進行銷售,其中茶杯的數(shù)量是茶壺數(shù)量的5倍還多20個.銷售方式有兩種:(1)單個銷售;(2)成套銷售.相關(guān)信息如下表:

進價(元/

單個售價(元/

成套售價(元/套)

茶壺

24

a

55

茶杯

4

a﹣30

備注:(1)一個茶壺和和四個茶杯配成一套(如圖);

(2)利潤=(售價﹣進價)×數(shù)量

(1)該商店購進茶壺和茶杯各有多少個?

(2)已知甲顧客花180元購買的茶壺數(shù)量與乙顧客花30元購買的茶杯數(shù)量相同.

①求表中a的值.

②當(dāng)該商店還剩下20個茶壺和100個茶杯時,商店將這些茶壺和茶杯中的一部分按成套銷售,其余按單個銷售,這120個茶壺和茶杯全部售出后所得的利潤為365元.問成套銷售了多少套?

查看答案和解析>>

同步練習(xí)冊答案