【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+10與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)C的坐標(biāo)是(8,4),連接AC,BC.

(1)求過O,A,C三點(diǎn)的拋物線的解析式,并判斷△ABC的形狀;
(2)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿OB以每秒2個(gè)單位長度的速度向點(diǎn)B運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),沿BC以每秒1個(gè)單位長度的速度向點(diǎn)C運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t為何值時(shí),PA=QA?
(3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)M,使以A,B,M為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】
(1)

解:∵直線y=﹣2x+10與x軸,y軸相交于A,B兩點(diǎn),

∴A(5,0),B(0,10),

∵拋物線過原點(diǎn),

∴設(shè)拋物線解析式為y=ax2+bx,

∵拋物線過點(diǎn)B(0,10),C(8,4),

,

∴拋物線解析式為y= x2 x,

∵A(5,0),B(0,10),C(8,4),

∴AB2=52+102=125,BC2=82+(8﹣5)2=100,AC2=42+(8﹣5)2=25,

∴AC2+BC2=AB2

∴△ABC是直角三角形


(2)

解:如圖1,

當(dāng)P,Q運(yùn)動(dòng)t秒,即OP=2t,CQ=10﹣t時(shí),

由(1)得,AC=OA,∠ACQ=∠AOP=90°,

在Rt△AOP和Rt△ACQ中,

∴Rt△AOP≌Rt△ACQ,

∴OP=CQ,

∴2t=10﹣t,

∴t= ,

∴當(dāng)運(yùn)動(dòng)時(shí)間為 時(shí),PA=QA


(3)

解:存在,

∵y= x2 x,

∴拋物線的對(duì)稱軸為x= ,

∵A(5,0),B(0,10),

∴AB=5

設(shè)點(diǎn)M( ,m),

①若BM=BA時(shí),

∴( 2+(m﹣10)2=125,

∴m1= ,m2= ,

∴M1 ),M2 , ),

②若AM=AB時(shí),

∴( 2+m2=125,

∴m3= ,m4=﹣ ,

∴M3 ),M4 ,﹣ ),

③若MA=MB時(shí),

∴( ﹣5)2+m2=( 2+(10﹣m)2

∴m=5,

∴M( ,5),此時(shí)點(diǎn)M恰好是線段AB的中點(diǎn),構(gòu)不成三角形,舍去,

∴點(diǎn)M的坐標(biāo)為:M1 , ),M2 , ),M3 , ),M4 ,﹣


【解析】(1)先確定出點(diǎn)A,B坐標(biāo),再用待定系數(shù)法求出拋物線解析式;用勾股定理逆定理判斷出△ABC是直角三角形;(2)根據(jù)運(yùn)動(dòng)表示出OP=2t,CQ=10﹣t,判斷出Rt△AOP≌Rt△ACQ,得到OP=CQ即可;(3)分三種情況用平面坐標(biāo)系內(nèi),兩點(diǎn)間的距離公式計(jì)算即可,此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法求函數(shù)解析式,三角形的全等的性質(zhì)和判定,等腰三角形的性質(zhì),解本題的關(guān)鍵是分情況討論,也是本題的難點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)|﹣4|×( ﹣1)0﹣2
(2)解不等式:3x>2(x+1)﹣1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀察猜想
如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),
①BC與CF的位置關(guān)系為:
②BC,CD,CF之間的數(shù)量關(guān)系為:;(將結(jié)論直接寫在橫線上)
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線段CB的延長線上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明.
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),延長BA交CF于點(diǎn)G,連接GE.若已知AB=2 ,CD= BC,請(qǐng)求出GE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的切線,B為切點(diǎn),AC經(jīng)過點(diǎn)O,與⊙O分別相交于點(diǎn)D,C.若∠ACB=30°,AB= ,則陰影部分的面積是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級(jí)學(xué)生的身高情況,隨機(jī)抽取部分學(xué)生的身高進(jìn)行調(diào)查,利用所得數(shù)據(jù)繪成如圖統(tǒng)計(jì)圖表:
頻數(shù)分布表

身高分組

頻數(shù)

百分比

x<155

5

10%

155≤x<160

a

20%

160≤x<165

15

30%

165≤x<170

14

b

x≥170

6

12%

總計(jì)

100%


(1)填空:a= , b=;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)該校九年級(jí)共有600名學(xué)生,估計(jì)身高不低于165cm的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】聊城“水城之眼”摩天輪是亞洲三大摩天輪之一,也是全球首座建筑與摩天輪相結(jié)合的城市地標(biāo),如圖,點(diǎn)O是摩天輪的圓心,長為110米的AB是其垂直地面的直徑,小瑩在地面C點(diǎn)處利用測(cè)角儀測(cè)得摩天輪的最高點(diǎn)A的仰角為33°,測(cè)得圓心O的仰角為21°,則小瑩所在C點(diǎn)到直徑AB所在直線的距離約為(tan33°≈0.65,tan21°≈0.38)( 。

A.169米
B.204米
C.240米
D.407米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了讓書籍開拓學(xué)生的視野,陶冶學(xué)生的情操,向陽中學(xué)開展了“五個(gè)一”課外閱讀活動(dòng),為了解全校學(xué)生課外閱讀情況,抽樣調(diào)查了50名學(xué)生平均每天課外閱讀時(shí)間(單位:min),將抽查得到的數(shù)據(jù)分成5組,下面是尚未完成的頻數(shù)、頻率分布表:

組別

分組

頻數(shù)(人數(shù))

頻率

1

10≤t<30

0.16

2

30≤t<50

20

3

50≤t<70

0.28

4

70≤t<90

6

5

90≤t<110


(1)將表中空格處的數(shù)據(jù)補(bǔ)全,完成上面的頻數(shù)、頻率分布表;

(2)請(qǐng)?jiān)诮o出的平面直角坐標(biāo)系中畫出相應(yīng)的頻數(shù)直方圖;
(3)如果該校有1500名學(xué)生,請(qǐng)你估計(jì)該校共有多少名學(xué)生平均每天閱讀時(shí)間不少于50min?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點(diǎn)F在邊AC上,并且CF=2,點(diǎn)E為邊BC上的動(dòng)點(diǎn),將△CEF沿直線EF翻折,點(diǎn)C落在點(diǎn)P處,則點(diǎn)P到邊AB距離的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC,垂足為點(diǎn)F,連接DF,分析下列四個(gè)結(jié)論:①△AEF~△CAB;②CF=2AF;③DF=DC;④tan∠CAD= .其中正確的結(jié)論有( )

A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案