【題目】如圖,大樓AB高16m,遠(yuǎn)處有一塔CD,某人在樓底B處測(cè)得塔頂C的仰角為38.5°,在樓頂A處測(cè)得塔頂?shù)难鼋菫?2°,求塔高CD的高及大樓與塔之間的距離BC的長(zhǎng).

(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,si38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80).

【答案】40

【解析】試題分析:過(guò)點(diǎn)AAECD于點(diǎn)E,由題意可知: ED=AB=16設(shè)大樓與塔之間的距離BD的長(zhǎng)為x,AE=BD=x,分別在RtBCD中和RtACE中,用表示出,利用CDCE=DE,得到有關(guān)的方程求得的值即可.

試題解析:過(guò)點(diǎn)AAECD于點(diǎn)E,由題意可知: ED=AB=16

設(shè)大樓與塔之間的距離BD的長(zhǎng)為x,AE=BD=x(不設(shè)未知數(shù)x也可以)

∵在RtBCD,

∵在RtACE,

CDCE=DE

0.8x0.4x=16,

x=40

BD=40(),

CD=0.8×40=32()

答:塔高CD32米,大樓與塔之間的距離BD的長(zhǎng)為40

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在ABCD中,DE、BF分別是∠ADC和∠ABC的角平分線(xiàn),交AB、CD于點(diǎn)E、F,連接BD、EF.

(1)求證:BD、EF互相平分;

(2)若∠A=600,AE=2EB,AD=4,求四邊形DEBF的周長(zhǎng)和面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對(duì)角線(xiàn)BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.

(1)當(dāng)m=4,n=20時(shí).

①若點(diǎn)P的縱坐標(biāo)為2,求直線(xiàn)AB的函數(shù)表達(dá)式.

②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說(shuō)明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了響應(yīng)上海市市政府綠色出行的號(hào)召,減輕校門(mén)口道路擁堵的現(xiàn)狀,王強(qiáng)決定改父母開(kāi)車(chē)接送為自己騎車(chē)上學(xué).已知他家離學(xué)校7.5千米,上下班高峰時(shí)段,駕車(chē)的平均速度比自行車(chē)平均速度快15千米/小時(shí),騎自行車(chē)所用時(shí)間比駕車(chē)所用時(shí)間多小時(shí)求自行車(chē)的平均速度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線(xiàn)y1=ax2+bx+ca≠0)圖象的一部分,拋物線(xiàn)的頂點(diǎn)坐標(biāo)A13),與x軸的一個(gè)交點(diǎn)B40),直線(xiàn)y2=mx+nm≠0)與拋物線(xiàn)交于A,B兩點(diǎn),下列結(jié)論:

①2a+b=0②abc0;方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根;拋物線(xiàn)與x軸的另一個(gè)交點(diǎn)是(-1,0);當(dāng)1x4時(shí),有y2y1,

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c的圖象與x軸交于A(﹣5,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C,拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)D.

(1)求拋物線(xiàn)的函數(shù)表達(dá)式;

(2)如圖1,點(diǎn)E(x,y)為拋物線(xiàn)上一點(diǎn),且﹣5<x<﹣2,過(guò)點(diǎn)E作EF∥x軸,交拋物線(xiàn)的對(duì)稱(chēng)軸于點(diǎn)F,作EH⊥x軸于點(diǎn)H,得到矩形EHDF,求矩形EHDF周長(zhǎng)的最大值;

(3)如圖2,點(diǎn)P為拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),是否存在點(diǎn)P,使以點(diǎn)P,A,C為頂點(diǎn)的三角形是直角三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形的邊長(zhǎng)為是邊的中點(diǎn),是邊上的一個(gè)動(dòng)點(diǎn),將線(xiàn)段繞著逆時(shí)針旋轉(zhuǎn),得到,連接,則的最小值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)在一次九年級(jí)數(shù)學(xué)做了檢測(cè)中,有一道滿(mǎn)分8分的解答題,按評(píng)分標(biāo)準(zhǔn),所有考生的得分只有四種:0分,3分,5分,8分.老師為了了解學(xué)生的得分情況與題目的難易情況,從全區(qū)4500名考生的試卷中隨機(jī)抽取一部分,通過(guò)分析與整理,繪制了如下兩幅圖不完整的統(tǒng)計(jì)圖.

請(qǐng)根據(jù)以上信息解答下列問(wèn)題:

1)填空:a=  b=  ,并把條形統(tǒng)計(jì)圖補(bǔ)全;

2)請(qǐng)估計(jì)該地區(qū)此題得滿(mǎn)分(即8分)的學(xué)生人數(shù);

3)已知難度系數(shù)的計(jì)算公式為L=,其中L為難度系數(shù),X為樣本平均得分,W為試題滿(mǎn)分值.一般來(lái)說(shuō),根據(jù)試題的難度系數(shù)可將試題分為以下三類(lèi):當(dāng)0L≤0.4時(shí),此題為難題;當(dāng)0.4L≤0.7時(shí),此題為中等難度試題;當(dāng)0.7L1時(shí),此題為容易題.試問(wèn)此題對(duì)于該地區(qū)的九年級(jí)學(xué)生來(lái)說(shuō)屬于哪一類(lèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景:

小紅同學(xué)在學(xué)習(xí)過(guò)程中遇到這樣一道計(jì)算題計(jì)算4×2.1124×2.11×2.222.222,她覺(jué)得太麻煩,估計(jì)應(yīng)該有可以簡(jiǎn)化計(jì)算的方法,就去請(qǐng)教崔老師.崔老師說(shuō):你完成下面的問(wèn)題后就可能知道該如何簡(jiǎn)化計(jì)算啦!

獲取新知:

請(qǐng)你和小紅一起完成崔老師提供的問(wèn)題:

1)填寫(xiě)下表:

x=-1,y1

x1,y0

x3,y2

x2,y=-1

x2y3

A2xy

3

2

4

5

1

B4x24xyy2

9

4

16

2)觀察表格,你發(fā)現(xiàn)AB有什么關(guān)系?

解決問(wèn)題:

3)請(qǐng)利用AB之間的關(guān)系計(jì)算:4×2.1124×2.11×2.222.222

查看答案和解析>>

同步練習(xí)冊(cè)答案