【題目】如圖,四邊形ABCD的四個(gè)頂點(diǎn)分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對(duì)角線BD//y軸,且BD⊥AC于點(diǎn)P.已知點(diǎn)B的橫坐標(biāo)為4.
(1)當(dāng)m=4,n=20時(shí).
①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.
②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時(shí)m,n之間的數(shù)量關(guān)系;若不能,試說明理由.
【答案】(1)①;②四邊形是菱形,理由見解析;(2)四邊形能是正方形,理由見解析,m+n=32.
【解析】
(1)①先確定出點(diǎn)A,B坐標(biāo),再利用待定系數(shù)法即可得出結(jié)論;
②先確定出點(diǎn)D坐標(biāo),進(jìn)而確定出點(diǎn)P坐標(biāo),進(jìn)而求出PA,PC,即可得出結(jié)論;
(2)先確定出B(4,),D(4,),進(jìn)而求出點(diǎn)P的坐標(biāo),再求出A,C坐標(biāo),最后用AC=BD,即可得出結(jié)論.
(1)①如圖1,
,
反比例函數(shù)為,
當(dāng)時(shí),,
,
當(dāng)時(shí),
,
,
,
設(shè)直線的解析式為,
,
,
直線的解析式為;
②四邊形是菱形,
理由如下:如圖2,
由①知,,
軸,
,
點(diǎn)是線段的中點(diǎn),
,
當(dāng)時(shí),由得,,
由得,,
,,
,
,
四邊形為平行四邊形,
,
四邊形是菱形;
(2)四邊形能是正方形,
理由:當(dāng)四邊形是正方形,記,的交點(diǎn)為,
,
當(dāng)時(shí),,
,,
,
,,,
,
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A,B,C,D在⊙O上,AB=AC,AD與BC相交于點(diǎn)E,AE=ED,延長(zhǎng)DB到點(diǎn)F,使FB=BD,連接AF.
(1)證明:△BDE∽△FDA;
(2)試判斷直線AF與⊙O的位置關(guān)系,并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)是等邊內(nèi)一點(diǎn),,,將繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)得到,連接,.
(1)當(dāng)時(shí),判斷的形狀,并說明理由;
(2)求的度數(shù);
(3)請(qǐng)你探究:當(dāng)為多少度時(shí),是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示.
(1)已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度數(shù);
(2)∠AOB=α,∠BOC=β,OM平分∠AOC,ON平分∠BOC,求∠MON的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以直線AB上一點(diǎn)O為端點(diǎn)作射線OC使∠BOC=60°,將一個(gè)直角三角形的直角頂點(diǎn)放在O處(注:∠DOE=90°).
(1)如圖1,若直角三角板DOE的一邊OD放在射線OB上,則∠COE=______;
(2)如圖2,將直角三角板DOE繞點(diǎn)O逆時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,若OE恰好平分∠AOC,則∠BOD=______;
(3)如圖3,將三角板DOE繞點(diǎn)O逆時(shí)針轉(zhuǎn)動(dòng)到某個(gè)位置時(shí),若恰好∠COD=∠AOE,求∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校八年級(jí)學(xué)生舉行朗誦比賽,全年級(jí)學(xué)生都參加,學(xué)校對(duì)表現(xiàn)優(yōu)異的學(xué)生進(jìn)行表彰,設(shè)置—、二、三等獎(jiǎng)和進(jìn)步獎(jiǎng)共四個(gè)獎(jiǎng)項(xiàng),賽后將八年級(jí)(1)班的獲獎(jiǎng)情況繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)報(bào)據(jù)圖中的信息,解答下列問題:
(1)八年級(jí)(1)班共有 名學(xué)生;
(2)將條形圖補(bǔ)充完整;在扇形統(tǒng)計(jì)圖中,“二等獎(jiǎng)”對(duì)應(yīng)的扇形的圓心角度數(shù) ;
(3)如果該八年級(jí)共有800名學(xué)生,請(qǐng)估計(jì)榮獲一、二、三等獎(jiǎng)的學(xué)生共有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c經(jīng)過點(diǎn)A(-1,t),B(3,t),與y軸交于點(diǎn)C(0,-1).一次函數(shù)y=x+n的圖象經(jīng)過拋物線的頂點(diǎn)D.
()求拋物線的表達(dá)式.
()求一次函數(shù)的表達(dá)式.
()將直線繞其與軸的交點(diǎn)旋轉(zhuǎn),使當(dāng)時(shí),直線總位于拋物線的下方,請(qǐng)結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大樓AB高16m,遠(yuǎn)處有一塔CD,某人在樓底B處測(cè)得塔頂C的仰角為38.5°,在樓頂A處測(cè)得塔頂?shù)难鼋菫?2°,求塔高CD的高及大樓與塔之間的距離BC的長(zhǎng).
(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,si38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)的圖像與一次函數(shù)的圖像交于點(diǎn),點(diǎn)的橫坐標(biāo)是,點(diǎn)是第一象限內(nèi)反比例函數(shù)圖像上的動(dòng)點(diǎn),且在直線的上方.
(1)若點(diǎn)的坐標(biāo)是,則 , ;
(2)設(shè)直線與軸分別交于點(diǎn),求證:是等腰三角形;
(3)設(shè)點(diǎn)是反比例函數(shù)圖像位于之間的動(dòng)點(diǎn)(與點(diǎn)不重合),連接,比較與的大小,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com