【題目】已知,如圖,正方形的邊長為4厘米,點(diǎn)從點(diǎn)出發(fā),經(jīng)沿正方形的邊以2厘米/秒的速度運(yùn)動(dòng);同時(shí),點(diǎn)從點(diǎn)出發(fā)以1厘米/秒的速度沿向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,的面積為平方厘米.
(1)當(dāng)時(shí),的面積為__________平方厘米;
(2)求的長(用含的代數(shù)式表示);
(3)當(dāng)點(diǎn)在線段上運(yùn)動(dòng),且為等腰三角形時(shí),求此時(shí)的值;
(4)求與之間的函數(shù)關(guān)系式.
【答案】(1)8;(2)BP=;(3);(4)S.
【解析】
(1)先確定當(dāng)t=2時(shí)P和Q的位置,再利用三角形面積公式可得結(jié)論;
(2)分兩種情況表示BP的長;
(3)如圖2,根據(jù)CQ=CP列方程可解答;
(4)分兩種情況:
①當(dāng)0≤t≤2時(shí),P在AB上,如圖3,②當(dāng)2<t≤4時(shí),P在BC上,如圖4,根據(jù)三角形面積公式可得結(jié)論.
(1)當(dāng)t=2時(shí),點(diǎn)P與B重合,Q在CD上,如圖1,∴△APQ的面積8(平方厘米).
故答案為:8;
(2)分兩種情況:
當(dāng)0≤t≤2時(shí),P在AB上,BP=AB﹣AP=4﹣2t,當(dāng)2<t≤4時(shí),P在BC上,BP=2t﹣4;
綜上所述:BP=;
(3)如圖2.
∵△PCQ為等腰三角形,∴CQ=CP,即t=8﹣2t,t,∴當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng),且△PCQ為等腰三角形時(shí),此時(shí)t的值是秒;
(4)分兩種情況:
①當(dāng)0≤t≤2時(shí),P在AB上,如圖3.
S4t
②當(dāng)2<t≤4時(shí),P在BC上,如圖4.
S=S正方形ABCD﹣S△ABP﹣S△CPQ﹣S△ADQ=4×4t2﹣6t+16;
綜上所述:S與t之間的函數(shù)關(guān)系式為:S.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,為直線上一點(diǎn),過點(diǎn)作射線,,將一直角三角板()的直角頂點(diǎn)放在點(diǎn)處,一邊在射線上,另一邊與都在直線的上方.
(1)將圖1中的三角板繞點(diǎn)以每秒的速度沿順時(shí)針方向旋轉(zhuǎn)一周.如圖2,經(jīng)過秒后,邊恰好平分.求的值;
(2)在(1)問條件的基礎(chǔ)上,若三角板在轉(zhuǎn)動(dòng)的同時(shí),射線也繞點(diǎn)以每秒的速度沿順時(shí)針方向旋轉(zhuǎn)一周,如圖3,那么經(jīng)過多長時(shí)間平分?請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=10°,點(diǎn)P在OB上.以點(diǎn)P為圓心,OP為半徑畫弧,交OA于點(diǎn)P1(點(diǎn)P1與點(diǎn)O不重合),連接PP1;再以點(diǎn)P1為圓心,OP為半徑畫弧,交OB于點(diǎn)P2(點(diǎn)P2與點(diǎn)P不重合),連接P1 P2;再以點(diǎn)P2為圓心,OP為半徑畫弧,交OA于點(diǎn)P3(點(diǎn)P3與點(diǎn)P1不重合),連接P2 P3;……
請按照上面的要求繼續(xù)操作并探究:
∠P3 P2 P4=_____°;按照上面的要求一直畫下去,得到點(diǎn)Pn,若之后就不能再畫出符合要求點(diǎn)Pn+1了,則n=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北國超市銷售每臺(tái)進(jìn)價(jià)分別為400元、350元的兩種型號(hào)的豆?jié){機(jī).下表是近兩周的銷售情況:
銷售數(shù)量:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
種型號(hào) | 種型號(hào) | ||
第一周 | 3臺(tái) | 5臺(tái) | 3500元 |
第二周 | 4臺(tái) | 10臺(tái) | 6000元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤=銷售收入-進(jìn)價(jià))
(1)求兩種型號(hào)的豆?jié){機(jī)的銷售單價(jià);
(2 )若第三周該超市采購這兩種型號(hào)的豆?jié){機(jī)共20臺(tái), 并且B型號(hào)的臺(tái)數(shù)比A型號(hào)的臺(tái)數(shù)的2倍少1 ,如果這20臺(tái)豆?jié){機(jī)全部售出,求這周銷售的利潤;
(3)若恰好用8000元采購這兩種型號(hào)的豆?jié){機(jī),問有哪幾種進(jìn)貨方案? ( 要求兩種型號(hào)都要采購)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為線段上一點(diǎn),點(diǎn)為的中點(diǎn),且,.
(1)圖中共有______條線段,分別是______;
(2)求線段的長;
(3)若點(diǎn)在直線上,且,求線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與反比例函數(shù)的圖象交于、兩點(diǎn),與軸交于點(diǎn),已知點(diǎn)的坐標(biāo)為.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)是反比例函數(shù)圖象上一點(diǎn),過點(diǎn)作軸于點(diǎn),延長交直線于點(diǎn),求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD邊長為3,點(diǎn)E在AB邊上且BE=1,點(diǎn)P,Q分別是邊BC,CD的動(dòng)點(diǎn)(均不與頂點(diǎn)重合),當(dāng)四邊形AEPQ的周長取最小值時(shí),四邊形AEPQ的面積是( 。
A. 3 B. 5 C. 4 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,點(diǎn)E,F,G,H分別是邊AB,BC,CD和DA的中點(diǎn),連接EF,FG,GH和HE,若EH=2EF=2,則菱形ABCD的邊長為( )
A. B. 2 C. 2 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在∠AOB的兩邊截取OA=OB,OC=OD,連接AD,BC交于點(diǎn)P,則下列結(jié)論中①△AOD≌△BOC,②△APC≌△BPD,③點(diǎn)P在∠AOB的平分線上.正確的是__.(填序號(hào))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com