【題目】如圖1,為直線上一點(diǎn),過(guò)點(diǎn)作射線,將一直角三角板()的直角頂點(diǎn)放在點(diǎn)處,一邊在射線上,另一邊都在直線的上方.

1)將圖1中的三角板繞點(diǎn)以每秒的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周.如圖2,經(jīng)過(guò)秒后,邊恰好平分.求的值;

2)在(1)問(wèn)條件的基礎(chǔ)上,若三角板在轉(zhuǎn)動(dòng)的同時(shí),射線也繞點(diǎn)以每秒的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周,如圖3,那么經(jīng)過(guò)多長(zhǎng)時(shí)間平分?請(qǐng)說(shuō)明理由;

【答案】15秒;(25秒時(shí)OC平分∠MON,理由見(jiàn)解析

【解析】

1)由OM平分∠BOC,得∠COM=MOB,結(jié)合∠AOC=30°,得∠COM=75°,進(jìn)而得∠AON=15°,即可得到答案;

2)由三角板繞點(diǎn)O以每秒3°的速度,射線OC也繞O點(diǎn)以每秒6°的速度旋轉(zhuǎn),得∠AON=3t,∠AOC=30°+6t,由OC平分∠MON,得∠CON=COM=45°,進(jìn)而列出關(guān)于t的方程,即可求解.

1)∵∠AON+MON+BOM=180°,∠MON=90°,

∴∠AON+BOM=90°,

OM平分∠BOC,

∴∠COM=MOB,

∵∠AOC=30°,

∴∠BOC=2COM=150°,

∴∠COM=75°,

∴∠CON=15°,

∴∠AON=AOC-∠CON=30°-15°=15°,

t=15÷3=5秒;

2)經(jīng)過(guò)5秒時(shí),OC平分∠MON,理由如下:

∵∠AON+BOM=90°,∠CON=COM,

∵∠MON=90°,

∴∠CON=COM=45°,

∵三角板繞點(diǎn)O以每秒3°的速度,射線OC也繞O點(diǎn)以每秒6°的速度旋轉(zhuǎn),

∴∠AON=3t,∠AOC=30°+6t,

∵∠AOC-∠AON=45°,

30°+6t3t=45°,

解得:t=5秒;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某教育局為了解本地八年級(jí)學(xué)生參加社會(huì)實(shí)踐活動(dòng)情況,隨機(jī)抽查了部分八年級(jí)學(xué)生第一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了兩幅統(tǒng)計(jì)圖,下面給出了兩幅不完整的統(tǒng)計(jì)圖(如圖)

請(qǐng)根據(jù)圖中提供的信息,回答下列問(wèn)題:

(1)α=   ,并寫出該扇形所對(duì)圓心角的度數(shù)為   ,請(qǐng)補(bǔ)全條形圖.

(2)在這次抽樣調(diào)查中,眾數(shù)和中位數(shù)分別是多少?

(3)如果該地共有八年級(jí)學(xué)生2000人,請(qǐng)你估計(jì)活動(dòng)時(shí)間不少于7的學(xué)生人數(shù)大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】7分)某興趣小組開(kāi)展課外活動(dòng).如圖,A,B兩地相距12米,小明從點(diǎn)A出發(fā)沿AB方向勻速前進(jìn),2秒后到達(dá)點(diǎn)D,此時(shí)他(CD)在某一燈光下的影長(zhǎng)為AD,繼續(xù)按原速行走2秒到達(dá)點(diǎn)F,此時(shí)他在同一燈光下的影子仍落在其身后,并測(cè)得這個(gè)影長(zhǎng)為1.2米,然后他將速度提高到原來(lái)的1.5倍,再行走2秒到達(dá)點(diǎn)H,此時(shí)他(GH)在同一燈光下的影長(zhǎng)為BH(點(diǎn)C,E,G在一條直線上).

(1)請(qǐng)?jiān)趫D中畫出光源O點(diǎn)的位置,并畫出他位于點(diǎn)F時(shí)在這個(gè)燈光下的影長(zhǎng)FM(不寫畫法);

2)求小明原來(lái)的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知∠1與線段a,用直尺和圓規(guī)按下列步驟作圖(保留作圖痕跡,不寫做法。)

(1)作等∠A于∠1

(2)在∠A的兩邊分別作AM=AN=a

(3)連接MN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,網(wǎng)格圖由邊長(zhǎng)為1的小正方形所構(gòu)成,RtABC的頂點(diǎn)分別是A(-13),B(-3,-1),C(-33).

1)請(qǐng)?jiān)趫D1中作出△ABC關(guān)于點(diǎn)(-1,0)成中心對(duì)稱△,并分別寫出A,C對(duì)應(yīng)點(diǎn)的坐標(biāo) ;

2)設(shè)線段AB所在直線的函數(shù)表達(dá)式為,試寫出不等式的解集是 ;

3)點(diǎn)M和點(diǎn)N 分別是直線ABy軸上的動(dòng)點(diǎn),若以,M,N為頂點(diǎn)的四邊形是平行四邊形,求滿足條件的M點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,,點(diǎn)D在邊BCB,C不重合,四邊形ADEF為正方形,過(guò)點(diǎn)F,交CA的延長(zhǎng)線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,得出以下結(jié)論:;:2;;其中正確結(jié)論的個(gè)數(shù)是  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將邊長(zhǎng)為2的正方形OABC放在平面直角坐標(biāo)系中,O是原點(diǎn),點(diǎn)A的橫坐標(biāo)為1,則點(diǎn)C的坐標(biāo)為( 。

A. (﹣21B. (﹣1,2C. ,﹣1D. (﹣,1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩個(gè)直角有公共頂點(diǎn).下列結(jié)論:①;②;③若平分,則平分;④的平分線與的平分線是同一條射線.其中結(jié)論正確的個(gè)數(shù)是( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,正方形的邊長(zhǎng)為4厘米,點(diǎn)從點(diǎn)出發(fā),經(jīng)沿正方形的邊以2厘米/秒的速度運(yùn)動(dòng);同時(shí),點(diǎn)從點(diǎn)出發(fā)以1厘米/秒的速度沿向點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,的面積為平方厘米.

1)當(dāng)時(shí),的面積為__________平方厘米;

2)求的長(zhǎng)(用含的代數(shù)式表示);

3)當(dāng)點(diǎn)在線段上運(yùn)動(dòng),且為等腰三角形時(shí),求此時(shí)的值;

4)求之間的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案