【題目】如圖,某數(shù)學(xué)興趣小組為了測(cè)量河對(duì)岸l1的兩棵古樹A、B之間的距離,他們?cè)诤舆@邊沿著與AB平行的直線l2上取C、D兩點(diǎn),測(cè)得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.

【答案】(50﹣).

【解析】

過點(diǎn)AAM⊥DC于點(diǎn)M,過點(diǎn)BBN⊥DC于點(diǎn)N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長(zhǎng)度,則易得MN=AB.

如圖,過點(diǎn)AAM⊥DC于點(diǎn)M,過點(diǎn)BBN⊥DC于點(diǎn)N,

AB=MN,AM=BN.

在直角△ACM,∵∠ACM=45°,AM=50m,

∴CM=AM=50m.

∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,

∴CN=(m),

∴MN=CMCN=50(m).

AB=MN=(50)m.

故答案是:(50).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為1的正方形中,對(duì)角線,相交于點(diǎn),點(diǎn),點(diǎn)分別是,的中點(diǎn),于點(diǎn),連接,,得到以下四個(gè)結(jié)論:①,②,③,④,其中正確的結(jié)論是________(填寫序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月,某大型商業(yè)集團(tuán)隨機(jī)抽取所屬的部分商業(yè)連鎖店進(jìn)行評(píng)估,將抽取的各商業(yè)連鎖店按照評(píng)估成績(jī)分成了、四個(gè)等級(jí),并繪制了如下不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.

根據(jù)以上信息,解答下列問題:

(1)本次評(píng)估隨機(jī)抽取了多少家商業(yè)連鎖店?

(2)請(qǐng)補(bǔ)充完整扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,并在圖中標(biāo)注相應(yīng)數(shù)據(jù);

(3)從、兩個(gè)等級(jí)的商業(yè)連鎖店中任選2家介紹營(yíng)銷經(jīng)驗(yàn),求其中至少有一家是等級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小趙投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過程中發(fā)現(xiàn),當(dāng)月內(nèi)銷售單價(jià)不變,則月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):

(1)設(shè)小趙每月獲得利潤(rùn)為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?并求出最大利潤(rùn).

(2)如果小趙想要每月獲得的利潤(rùn)不低于2000元,那么如何制定銷售單價(jià)才可以實(shí)現(xiàn)這一目標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于多項(xiàng)式Ax2bxcbc為常數(shù)),作如下探究:

1)不論x取何值,A都是非負(fù)數(shù),求bc滿足的條件;

2)若A是完全平方式,

①當(dāng)c=9時(shí),b= ;當(dāng)b=3時(shí),c= ;

②若多項(xiàng)式Bx2dxcA有公因式,求d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(1

2)若分式方程:無(wú)解,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了落實(shí)中央的“強(qiáng)基惠民工程”,計(jì)劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的15倍.如果由甲、乙隊(duì)先合做15天,那么余下的工程由甲隊(duì)單獨(dú)完成還需5天.

1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?

2)已知甲隊(duì)每天的施工費(fèi)用為6500元,乙隊(duì)每天的施工費(fèi)用為3500元.為了縮短工期以減少對(duì)居民用水的影響,工程指揮部最終決定該工程由甲、乙隊(duì)合做來完成.則該工程施工費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與直線y=x-3交于A,B兩點(diǎn),其中點(diǎn)By軸上,點(diǎn)A坐標(biāo)為(-4,-5),點(diǎn)Py軸左側(cè)的拋物線上一動(dòng)點(diǎn),過點(diǎn)PPC⊥x軸于點(diǎn)C,交AB于點(diǎn)D.

(1)求拋物線的解析式;

(2)O,B,P,D為頂點(diǎn)的平行四邊形是否存在?如存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由;

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到直線AB下方某一處時(shí),△PAB的面積是否有最大值?如果有,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,Am0)為 x 軸負(fù)半軸上的點(diǎn),B0n)為 y 軸負(fù)半軸上的點(diǎn).

1)如圖,以 A 點(diǎn)為頂點(diǎn),AB 為腰在第三象限作等腰 RtABC.若已知 m= 2n= 4,試求 C 點(diǎn)的坐標(biāo);

2)若∠ACB90°,點(diǎn) C 的坐標(biāo)為(4, 4),請(qǐng)?jiān)谧鴺?biāo)系中畫出圖形并求 nm 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案