【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△A'B'C,M是BC的中點(diǎn),P是A'B'的中點(diǎn),連接PM.若BC=2,∠BAC=30°,則線段PM的最大值是( 。
A.4B.3C.2D.1
【答案】B
【解析】
連接PC,根據(jù)∠A=30°,BC=2,可知AB的值,根據(jù)旋轉(zhuǎn)的性質(zhì)可知A′B′=AB,進(jìn)而可知A′P、PB′、PC的知,結(jié)合圖形和三角形三邊關(guān)系即可得出PM的取值范圍,進(jìn)而可知P、C、M共線時(shí),PM值最大,即可選出答案.
解:如圖連接PC.
在Rt△ABC中,∵∠A=30°,BC=2,
∴AB=4,
根據(jù)旋轉(zhuǎn)不變性可知,A′B′=AB=4,
∴A′P=PB′,
∴PC=A′B′=2,
∵CM=BM=1,
又∵PM≤PC+CM,即PM≤3,
∴PM的最大值為3(此時(shí)P、C、M共線).
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,BC=3,BD為對(duì)角線.點(diǎn)P從點(diǎn)B出發(fā),沿線段BA向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q從點(diǎn)D出發(fā),沿線段DB向點(diǎn)B運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長(zhǎng)度,當(dāng)點(diǎn)P運(yùn)動(dòng)到A時(shí),兩點(diǎn)都停止.設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)是否存在某一時(shí)刻t,使得PQ∥AD?若存在,求出t的值;若不存在,說(shuō)明理由.
(2)設(shè)四邊形BPQC的面積為S,求S與t之間的函數(shù)關(guān)系式.
(3)是否存在某一時(shí)刻t,使得S四邊形BPQC:S矩形ABCD=9:20?若存在,求出t的值;若不存在,則說(shuō)明理由.
(4)是否存在某一時(shí)刻t,使得PQ⊥CQ?若存在,求出t的值;若不存在,則說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物y=ax2+bx+c(b<0)與軸只有一個(gè)公共點(diǎn).
(1)若公共點(diǎn)坐標(biāo)為(2,0),求a、c滿足的關(guān)系式;
(2)設(shè)A為拋物線上的一定點(diǎn),直線l:y=kx+1-k與拋物線交于點(diǎn)B、C兩點(diǎn),直線BD垂直于直線y=-1,垂足為點(diǎn)D.當(dāng)k=0時(shí),直線l與拋物線的一個(gè)交點(diǎn)在y軸上,且△ABC為等腰直角三角形.
①求點(diǎn)A的坐標(biāo)和拋物線的解析式;
②證明:對(duì)于每個(gè)給定的實(shí)數(shù)k,都有A、D、C三點(diǎn)共線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,給出下列結(jié)論:
①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正確的個(gè)數(shù)有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)要經(jīng)營(yíng)一種新上市的文具,進(jìn)價(jià)為20元,試營(yíng)銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件.
(1)寫出商場(chǎng)銷售這種文具,每天所得的銷售利潤(rùn)(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤(rùn)最大;最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了對(duì)甲,乙兩名同學(xué)進(jìn)行學(xué)生會(huì)主席的競(jìng)選考核、召開了一次競(jìng)選答辯及民主測(cè)評(píng)會(huì).由A,B,C,D,E五位教師評(píng)委對(duì)競(jìng)選答辯進(jìn)行評(píng)分,并選出20名學(xué)生代表參加民主投票.競(jìng)選答辯的結(jié)果如下表所示:
評(píng)委 得分 選手 | A | B | C | D | E |
甲 | 92 | 88 | 90 | 94 | 96 |
乙 | 84 | 86 | 90 | 93 | 91 |
民主投票的結(jié)果為:甲8票,乙12票.
根據(jù)以上信息解答下列問題:
(1)甲,乙兩人的競(jìng)選答辯得分分別是多少?
(2)如果綜合得分=競(jìng)選答辯得分+民主投票得分,那么,甲,乙兩人誰(shuí)當(dāng)選學(xué)生會(huì)主席?
(3)如果綜合得分=競(jìng)選答辯得分民主投票得分,那么,當(dāng)時(shí),甲,乙兩人誰(shuí)當(dāng)選學(xué)生會(huì)主席?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小明在教學(xué)樓A處分別觀測(cè)對(duì)面實(shí)驗(yàn)樓CD底部的俯角為45°,頂部的仰角為37°,已知教學(xué)樓和實(shí)驗(yàn)樓在同一平面上,觀測(cè)點(diǎn)距地面的垂直高度AB為15m,求實(shí)驗(yàn)樓的垂直高度即CD長(zhǎng)(精確到1m).
參考值:sin37°=0.60,cos37°=0.80,tan37°=0.75.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上.
(1)把△ABC向上平移5個(gè)單位后得到對(duì)應(yīng)的△A1B1C1,畫出△A1B1C1;
(2)畫出與△ABC關(guān)于原點(diǎn)O對(duì)稱的△A2B2C2;
(3)△A1B1C1與△A2B2C2關(guān)于某個(gè)點(diǎn)對(duì)稱,則這個(gè)點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com