【題目】如圖,點(diǎn)為的斜邊的中點(diǎn),,,以點(diǎn)為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)得到,若,當(dāng)時(shí),圖中弧所構(gòu)成的陰影部分面積為().
A.B.C.D.
【答案】A
【解析】
設(shè)A1C1與AB的交點(diǎn)為D,連接OC1,作DE⊥OC1于E,根據(jù)含30°角的直角三角形的性質(zhì),直角三角形斜邊中線的性質(zhì)以及平行線的性質(zhì)求得∠BOC1=30°,OC1=2,DE=,然后根據(jù)扇形面積公式、三角形的面積公式即可求得陰影的面積.
解:設(shè)A1C1與AB的交點(diǎn)為D,連接OC1,作DE⊥OC1于E,
∵在△ABC中,∠C=90°,∠A=30°,BC=2,
∴AB=2BC=4,∠ABC=60°,
∵點(diǎn)O為Rt△ABC的斜邊AB的中點(diǎn),
∴OC=AB=2,
∴OC1=OA1=2,
∴∠A1=∠A1C1O=30°,
∴∠A1OC1=120°,
∵BC∥A1C1,
∴∠ADA1=∠ABC=60°,
∵∠A1=∠A=30°,
∴∠A1OD=90°,
∴∠DOC1=30°,
∴∠DOC1=∠A1C1O,
∴OD=DC1,
∴OE=EC1=1,
∴DE=OE=,
∴S陰影=S扇形-S△ODC1=-×2×=π-
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=16cm,AC=12cm,動點(diǎn)P、Q分別以每秒2cm和1cm的速度同時(shí)開始運(yùn)動,其中點(diǎn)P從點(diǎn)A出發(fā),沿AC邊一直移到點(diǎn)C為止,點(diǎn)Q從點(diǎn)B出發(fā)沿BA邊一直移到點(diǎn)A為止,(點(diǎn)P到達(dá)點(diǎn)C后,點(diǎn)Q繼續(xù)運(yùn)動)
(1)請直接用含t的代數(shù)式表示AP的長和AQ的長,并寫出定義域.
(2)當(dāng)t等于何值時(shí),△APQ與△ABC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在反比例函數(shù)(x<0)的圖象上,連接OA,分別以點(diǎn)O和點(diǎn)A為圓心,大于的長為半徑作弧,兩弧相交于B,C兩點(diǎn),過B,C兩點(diǎn)作直線交x軸于點(diǎn)D,連接AD.若∠AOD=30°,△AOD的面積為2,則k的值為( )
A.﹣6B.6C.﹣2D.﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于點(diǎn)和,給出如下定義:
如果,那么稱點(diǎn)為點(diǎn)的“伴隨點(diǎn)”.
例如:點(diǎn)的“伴隨點(diǎn)”為點(diǎn);點(diǎn)的“伴隨點(diǎn)”為點(diǎn).
(1)直接寫出點(diǎn)的“伴隨點(diǎn)”的坐標(biāo).
(2)點(diǎn)在函數(shù)的圖象上,若其“伴隨點(diǎn)”的縱坐標(biāo)為2,求函數(shù)的解析式.
(3)點(diǎn)在函數(shù)的圖象上,且點(diǎn)關(guān)于軸對稱,點(diǎn)的“伴隨點(diǎn)”為.若點(diǎn)在第一象限,且,求此時(shí)“伴隨點(diǎn)”的橫坐標(biāo).
(4)點(diǎn)在函數(shù)的圖象上,若其“伴隨點(diǎn)”的縱坐標(biāo)的最大值為,直接寫出實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=(x>0)的圖象與一次函數(shù)y=ax﹣2(a≠0)的圖象交于點(diǎn)A(3,n).
(1)求實(shí)數(shù)a的值;
(2)設(shè)一次函數(shù)y=ax﹣2(a≠0)的圖象與y軸交于點(diǎn)B,若點(diǎn)C在y軸上,且S△ABC=2S△AOB,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(-2,a),C(3a-10,1)是反比例函數(shù)(x<0)圖象上的兩點(diǎn).
(1)求m的值;
(2)過點(diǎn)A作AP⊥x軸于點(diǎn)P,若直線y=kx+b經(jīng)過點(diǎn)A,且與x軸交于點(diǎn)B,當(dāng)∠PAC=∠PAB時(shí),求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以等邊△ABC的邊BC為直徑作⊙O,分別交AB、AC于點(diǎn)D、E,過點(diǎn)D作DF⊥AC交AC于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若等邊△ABC的邊長為8,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解學(xué)生疫情期間一天在線學(xué)習(xí)時(shí)長,進(jìn)行了一次隨機(jī)問卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中信息解答下列問題:
(1)求參與問卷調(diào)查的總?cè)藬?shù).
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出一天在線學(xué)習(xí)“5﹣7個小時(shí)”的扇形圓心角度數(shù).
(3)若該校共有學(xué)生1800名,試估計(jì)全校一天在線學(xué)習(xí)“7小時(shí)以上”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形的兩條對稱軸為坐標(biāo)軸,點(diǎn)的坐標(biāo)為.一張透明紙上畫有一個點(diǎn)和一條拋物線,平移透明紙,使點(diǎn)與點(diǎn)重合,此時(shí)拋物線的函數(shù)表達(dá)式為,再次平移透明紙,使點(diǎn)與點(diǎn)重合,則該拋物線的函數(shù)表達(dá)式變?yōu)?/span>_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com