【題目】如圖,直線軸,軸分別交于兩點(diǎn),動點(diǎn)在線段上移動(與不重合),以為頂點(diǎn)作軸于點(diǎn)

1)求點(diǎn)和點(diǎn)的坐標(biāo);

2)求證:

3)是否存在點(diǎn)使得是等腰三角形?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.

【答案】1;(2)見解析;(3)存在,

【解析】

1)令x=0,即可得到點(diǎn)A坐標(biāo),令y=0,即可得到點(diǎn)B坐標(biāo);

2)由(1)可知△AOB是等腰直角三角形,再根據(jù)三角形的外角的性質(zhì)即可得到∠OPQ+BPQ=∠AOP+∠OAP,結(jié)合即可證明;

3)分兩種情況討論,①如圖1,當(dāng)∠OPQ=45°為底角時,得到∠PQO=90°PQ=OQ,設(shè)Pa,a),代入y=-x+1中即可求出P的坐標(biāo);②如圖2,當(dāng)∠OPQ=45°為頂角時,根據(jù)(2)中結(jié)論證明△OAP≌△PBQAAS),得到AO=BP=1,利用銳角三角形函數(shù)求出PMOM即可解答.

解:(1)對于y=-x+1,

當(dāng)x=0時,y=1,當(dāng)y=0時,x=1,

2)∵,

OA=OB=1,

∴△AOB是等腰直角三角形,

∴∠OAB=OBA=45°,

∵∠OPB是△AOP的外角,

∴∠OPB=∠AOP+∠OAP,即∠OPQ+BPQ=∠AOP+∠OAP,

又∵

;

3)存在,

①如圖1,當(dāng)∠OPQ=45°為底角時,

則∠OPQ=POQ=45°,

∴∠PQO=90°PQ=OQ,

設(shè)Pa,a),代入y=-x+1中得,a=-a+1,解得:,

②如圖2,當(dāng)∠OPQ=45°為頂角時,過點(diǎn)PPMOB于點(diǎn)M,

OP=PQ

又∵∠OAP=PBQ=45°,∠AOP=∠BPQ,

∴△OAP≌△PBQAAS),

AO=BP=1,

∵∠PBM=45°,∠PMB=90°,

PM=BM=,

OM=,

P

綜上所述,點(diǎn)P的坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD=2,AB=3,過點(diǎn)A,C作相距為2的平行線段AE,CF,分別交CD,AB于點(diǎn)E,F(xiàn),則DE的長是( 。

A. B. C. 1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)L1ymx2+2mx3m+1m≥1)和二次函數(shù)L2y=﹣mx32+4m1m≥1)圖象的頂點(diǎn)分別為M,N,與x軸分別相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)和C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊).

1)函數(shù)ymx2+2mx3m+1m≥1)的頂點(diǎn)坐標(biāo)為______;當(dāng)二次函數(shù)L1,L2y值同時隨著x的增大而增大時,則x的取值范圍是______

2)當(dāng)ADMN時,判斷四邊形AMDN的形狀(直接寫出,不必證明);

3)拋物線L1L2均會分別經(jīng)過某些定點(diǎn),

①求所有定點(diǎn)的坐標(biāo);

②若拋物線L1位置固定不變,通過左右平移拋物線L2的位置使這些定點(diǎn)組成的圖形為菱形,則拋物線L2應(yīng)平移的距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有這樣一個問題:探究函數(shù)的圖象與性質(zhì).小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請補(bǔ)充完整:

(1)函數(shù)的自變量x的取值范圍是 ;

(2)下表是xy的幾組對應(yīng)值.

...

1

2

3

...

...

m

...

m的值;

(3)如圖,在平面直角坐標(biāo)系中,已描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(1,).結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(寫兩條即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABCD中,E、F分別是AC上兩點(diǎn),且BEACE,DFACF.求證:四邊形BEDF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,外角的角平分線,反向延長與線段延長線交于點(diǎn)于點(diǎn)旋轉(zhuǎn),得到的交點(diǎn),延長線的交點(diǎn),現(xiàn)有以下結(jié)論:

;

;

,則

時,

其中正確的結(jié)論是_____________________(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸、軸分別交于點(diǎn)和點(diǎn)上的一點(diǎn),若將沿折疊,點(diǎn)恰好落在軸上的點(diǎn)處,則點(diǎn)的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為rr1),P是圓內(nèi)與圓心C不重合的點(diǎn),⊙C完美點(diǎn)的定義如下:若直線CP與⊙C交于點(diǎn)A,B,滿足|PAPB|=2,則稱點(diǎn)P為⊙C完美點(diǎn),如圖為⊙C及其完美點(diǎn)”P的示意圖.

1)當(dāng)⊙O的半徑為2時,

①在點(diǎn)M,N0,1),T中,⊙O完美點(diǎn)   ;

②若⊙O完美點(diǎn)”P在直線y=x上,求PO的長及點(diǎn)P的坐標(biāo);

2)⊙C的圓心在直線y=x+1上,半徑為2,若y軸上存在⊙C完美點(diǎn),求圓心C的縱坐標(biāo)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某市九年級學(xué)生學(xué)業(yè)考試體育成績,現(xiàn)從中隨機(jī)抽取部分學(xué)生的體育成績進(jìn)行分段(A50分;B4945分;C4440分;D3930分;E290分)統(tǒng)計如下:

學(xué)業(yè)考試體育成績(分?jǐn)?shù)段)統(tǒng)計表

分?jǐn)?shù)段

人數(shù)(人)

頻率

A

48

0.2

B

a

0.25

C

84

0.35

D

36

b

E

12

0.05

根據(jù)上面提供的信息,回答下列問題:

1)在統(tǒng)計表中,a的值為   ,b的值為   ,并將統(tǒng)計圖補(bǔ)充完整(溫馨提示:作圖時別忘了用0.5毫米及以上的黑色簽字筆涂黑);

2)甲同學(xué)說:“我的體育成績是此次抽樣調(diào)查所得數(shù)據(jù)的中位數(shù).”請問:甲同學(xué)的體育成績應(yīng)在什么分?jǐn)?shù)段內(nèi)?   (填相應(yīng)分?jǐn)?shù)段的字母)

3)如果把成績在40分以上(含40分)定為優(yōu)秀,那么該市今年10440名九年級學(xué)生中體育成績?yōu)閮?yōu)秀的學(xué)生人數(shù)約有多少名?

查看答案和解析>>

同步練習(xí)冊答案