【題目】如圖,AB是圓O的直徑,O為圓心,AD、BD是半圓的弦,且∠PDA=∠PBD.延長(zhǎng)PD交圓的切線BE于點(diǎn)E
(1)證明:直線PD是⊙O的切線.
(2)如果∠BED=60°,,求PA的長(zhǎng).
(3)將線段PD以直線AD為對(duì)稱軸作對(duì)稱線段DF,點(diǎn)F正好在圓O上,如圖2,求證:四邊形DFBE為菱形.
【答案】(1)證明見解析;(2)1;(3)證明見解析.
【解析】(1)連接OD,由AB是圓O的直徑可得∠ADB=90°,進(jìn)而求得∠ADO+∠PDA=90°,即可得出直線PD為⊙O的切線;
(2)根據(jù)BE是⊙O的切線,則∠EBA=90°,即可求得∠P=30°,再由PD為⊙O的切線,得∠PDO=90°,根據(jù)三角函數(shù)的定義求得OD,由勾股定理得OP,即可得出PA;
(3)根據(jù)題意可證得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圓O的直徑,得∠ADB=90°,設(shè)∠PBD=x°,則可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圓內(nèi)接四邊形的性質(zhì)得出x的值,可得出△BDE是等邊三角形.進(jìn)而證出四邊形DFBE為菱形.
(1)如圖1,連接OD,
∵AB是圓O的直徑,
∴∠ADB=90°,
∴∠ADO+∠BDO=90°,
又∵DO=BO,
∴∠BDO=∠PBD,
∵∠PDA=∠PBD,
∴∠BDO=∠PDA,
∴∠ADO+∠PDA=90°,
即PD⊥OD,
∵點(diǎn)D在⊙O上,
∴直線PD為⊙O的切線.
(2)解:∵BE是⊙O的切線,
∴∠EBA=90°,
∵∠BED=60°,
∴∠P=30°.
∵PD為⊙O的切線,
∴∠PDO=90°,
在Rt△PDO中,∠P=30°,,
∴,解得OD=1,
∴,
∴PA=PO﹣AO=2﹣1=1.
(3)證明:如圖2,
依題意得:∠ADF=∠PDA,∠PAD=∠DAF,
∵∠PDA=∠PBD∠ADF=∠ABF,
∴∠ADF=∠PDA=∠PBD=∠ABF,
∵AB是圓O的直徑,
∴∠ADB=90°,
設(shè)∠PBD=x°,
則∠DAF=∠PAD=90°+x°,∠DBF=2x°,
∵四邊形AFBD內(nèi)接于⊙O,∴∠DAF+∠DBF=180°,
即90°+x+2x=180°,
解得x=30°
∴∠ADF=∠PDA=∠PBD=∠ABF=30°.
∵BE、ED是⊙O的切線,
∴DE=BE,∠EBA=90°,
∴∠DBE=60°,
∴△BDE是等邊三角形.
∴BD=DE=BE,
又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,
∴△BDF是等邊三角形.
∴BD=DF=BF,
∴DE=BE=DF=BF,
∴四邊形DFBE為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(-10,0),B(-6,0),點(diǎn)C在y軸的正半軸上,∠CBO=45°,CD∥AB,∠CDA=90°.點(diǎn)P從點(diǎn)Q(8,0)出發(fā),沿x軸向左以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)求點(diǎn)C的坐標(biāo).
(2)當(dāng)∠BCP=15°時(shí),求t的值.
(3)以PC為直徑作圓,當(dāng)該圓與四邊形ABCD的邊(或邊所在的直線)相切時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某劇院的觀眾席的座位為扇形,且按下列分式設(shè)置:
排數(shù)(x) | 1 | 2 | 3 | 4 | … |
座位數(shù)(y) | 50 | 53 | 56 | 59 | … |
(1)按照上表所示的規(guī)律,當(dāng)x每增加1時(shí),y如何變化?
(2)寫出座位數(shù)y與排數(shù)x之間的關(guān)系式;
(3)按照上表所示的規(guī)律,某一排可能有90個(gè)座位嗎?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長(zhǎng)為5cm的等邊三角形,點(diǎn)P,Q分別從頂點(diǎn)A,B同時(shí)出發(fā),沿線段AB,BC運(yùn)動(dòng),且它們的速度都為1cm/s.當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P,Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)t為何值時(shí),△PBQ是直角三角形?
(2)連接AQ、CP,相交于點(diǎn)M,則點(diǎn)P,Q在運(yùn)動(dòng)的過程中,∠CMQ會(huì)變化嗎?若變化,則說明理由;若不變,請(qǐng)求出它的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠1=∠2,AE⊥OB于E,BD⊥OA于D,交點(diǎn)為C,則圖中全等三角形共有( )
A. 2對(duì) B. 3對(duì) C. 4對(duì) D. 5對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一只跳蚤在第一象限及x軸、y軸上跳動(dòng),第一秒它從原點(diǎn)跳動(dòng)到點(diǎn)(0,1),第二秒它從點(diǎn)(0,1)跳到點(diǎn)(1,1),然后接著按圖中箭頭所示方向跳動(dòng)[即(0,0)→(0,1)→(1,1)→(1,0)→…],每秒跳動(dòng)一個(gè)單位長(zhǎng)度,那么30秒后跳蚤所在位置的坐標(biāo)是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為推廣陽光體育“大課間”活動(dòng),我市某中學(xué)決定在學(xué)生中開設(shè)A:實(shí)心球.B:立定跳遠(yuǎn),C:跳繩,D:跑步四種活動(dòng)項(xiàng)目.為了了解學(xué)生對(duì)四種項(xiàng)目的喜歡情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計(jì)圖.請(qǐng)結(jié)合圖中的信息解答下列問題:
(1)在這項(xiàng)調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請(qǐng)計(jì)算本項(xiàng)調(diào)查中喜歡“立定跳遠(yuǎn)”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請(qǐng)用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,AE平分∠BAC
(1)若∠B=70°,∠C=30°,求;
①∠BAE的度數(shù).
②∠DAE的度數(shù).
(2)探究:如果只知道∠B=∠C+40°,那么能求岀∠DAE的度數(shù)嗎?若能,請(qǐng)你寫出求解過程;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:
(1)∠A和∠5是直線______和直線_____被直線_______所截而成的,∠A和∠4是直線_____和直線_____被直線_____所截而成的,∠1和∠8是直線_____和直線_____被直線___________所截而成的.
(2)指出圖中所有的同位角__________,________________;指出圖中所有的內(nèi)錯(cuò)角_______,________________;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com