【題目】如圖,在平行四邊形ABCD中,AEBC邊上的高,點FDE的中點,ABAG關(guān)于AE對稱,AEAF關(guān)于AG對稱.

(1)求證:AEF是等邊三角形;

(2)若AB=2,求AFD的面積.

【答案】(1)證明見解析;(2)SADF=

【解析】1)先根據(jù)軸對稱性質(zhì)及BCADADE為直角三角形,由FAD中點知AF=EF,再結(jié)合AEAF關(guān)于AG對稱知AE=AF,即可得證;

(2)由AEF是等邊三角形且ABAG關(guān)于AE對稱、AEAF關(guān)于AG對稱知∠EAG=30°,據(jù)此由AB=2AE=AF=DF=、AH=,從而得出答案.

(1)ABAG關(guān)于AE對稱,

AEBC,

∵四邊形ABCD是平行四邊形,

ADBC,

AEAD,即∠DAE=90°,

∵點FDE的中點,即AFRtADE的中線,

AF=EF=DF,

AEAF關(guān)于AG對稱,

AE=AF,

AE=AF=EF,

∴△AEF是等邊三角形;

(2)記AG、EF交點為H,

∵△AEF是等邊三角形,且AEAF關(guān)于AG對稱,

∴∠EAG=30°,AGEF,

ABAG關(guān)于AE對稱,

∴∠BAE=GAE=30°,AEB=90°,

AB=2,

BE=1、DF=AF=AE=

EH=AE=、AH=,

SADF=×

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,ADC=60°,AB=BC=1,則下列結(jié)論:

①∠CAD=30°BD=S平行四邊形ABCD=ABACOE=ADSAPO=,正確的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的邊ABx軸上,點B坐標(biāo)(﹣3,0),點Cy軸正半軸上,且sinCBO=,點P從原點O出發(fā),以每秒一個單位長度的速度沿x軸正方向移動,移動時間為t(0≤t≤5)秒,過點P作平行于y軸的直線l,直線l掃過四邊形OCDA的面積為S.

(1)求點D坐標(biāo).

(2)求S關(guān)于t的函數(shù)關(guān)系式.

(3)在直線l移動過程中,l上是否存在一點Q,使以B、C、Q為頂點的三角形是等腰直角三角形?若存在,直接寫出Q點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某公司員工的年收入情況,隨機抽查了公司部分員工年收入情況并繪制如圖所示統(tǒng)計圖.

1)請按圖中數(shù)據(jù)補全條形圖;

2)由圖可知員工年收入的中位數(shù)是 ,眾數(shù)是 ;

3)估計該公司員工人均年收入約為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用“※”定義一種新運算:對于任意有理數(shù)ab,規(guī)定abab2+2ab+a

如:121×22+2×1×2+19

1)(﹣2)※3  ;

2)若316,求a的值;

3)若2xm,(x)※3n(其中x為有理數(shù)),試比較mn的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在ABC中,已知點D,EF分別是BC,AD,CE的中點,且SABC=4,則SBEF的等于(

A. B. 1C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MNAC于點D,交AB于點E

1)求證:△ABD是等腰三角形;

2)若∠A=40°,求∠DBC的度數(shù);

3)若AE=6△CBD的周長為20,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將圖1中的正方形剪開得到圖2,則圖2中共有4個正方形;將圖2中的一個正方形剪開得到圖3,圖3中共有7個正方形;將圖34個較小的正方中的一個剪開得到圖4,則圖4中共有10個正方形,照這個規(guī)律剪下去……

1)根據(jù)圖中的規(guī)律補全下表:

圖形標(biāo)號

1

2

3

4

5

6

n

正方形個數(shù)

1

4

7

10

2)求第幾幅圖形中有2020個正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校要在一塊三角形空地上種植花草,如圖所示,AC13 米、AB14 米、BC15 米, 若線段 CD 是一條引水渠,且點 D 在邊 AB 上.已知水渠的造價每米 150 元.問:點 D 與點 C 距離多遠時,水渠的造價最低?最低造價是多少元?

查看答案和解析>>

同步練習(xí)冊答案