【題目】近幾年,中學(xué)生過生日互送禮物甚至有部分家長(zhǎng)為慶賀孩子生日大擺宴席攀比之風(fēng)已成為社會(huì)關(guān)注熱點(diǎn).為此某媒體記者就中學(xué)生攀比心理的成因?qū)δ呈谐菂^(qū)若干名市民進(jìn)行了調(diào)查,調(diào)查結(jié)果分為四組:社會(huì)環(huán)境的影響;學(xué)校正確引導(dǎo)的缺失;家長(zhǎng)榜樣示范的不足;其他.并將調(diào)查結(jié)果繪制成如下條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖均不完整
請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
扇形統(tǒng)計(jì)圖中,B組所在扇形的圓心角度數(shù)是______;
將條形統(tǒng)計(jì)圖補(bǔ)充完整;
根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該市城區(qū)120000名市民中有多少名市民持C組觀點(diǎn);
針對(duì)現(xiàn)在部分同學(xué)因舉行生日宴會(huì)而造成極大浪費(fèi)的現(xiàn)象,請(qǐng)你簡(jiǎn)單說說中學(xué)生大操大辦慶祝生日的危害性,并提出合理化的建議.
【答案】(1)90°;(2)見解析;(3)48000;(4)見解析
【解析】
(1)根據(jù)條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的關(guān)系,用A組的人數(shù)除以A組所在扇形統(tǒng)計(jì)圖中的百分?jǐn)?shù),即可解決.
(2)求出總?cè)藬?shù),然后減去A、B、D組的人數(shù)即可求得C組的人數(shù),補(bǔ)全條形統(tǒng)計(jì)圖即可.
(3)用C組的人數(shù)除以總?cè)藬?shù),然后再乘以120000即可解決.
(4)從大操大辦的危害性和培養(yǎng)學(xué)生勤儉節(jié)約的方面考慮即可.
解:本次調(diào)查的人數(shù)為:,
B組所在扇形的圓心角度數(shù)是:,
組人數(shù)為:,
補(bǔ)充完整的條形統(tǒng)計(jì)圖如下圖所示;
人,
答:計(jì)該市城區(qū)120000名市民中有48000名市民持C組觀點(diǎn);
中學(xué)生大操大辦慶祝生日的危害性:第一,造成孩子們的互相攀比現(xiàn)象;第二,給很多家庭帶來負(fù)擔(dān);第三,不利于孩子們樹立正確的價(jià)值觀;
合理化建議:可以一家人給孩子在家里辦一個(gè)生日宴,這樣可以和孩子拉近感情,又讓孩子感受到父母對(duì)他們的關(guān)注.(根據(jù)題意寫出幾條為孩子和合理化建議即可,本題答案不唯一,只要合理即可.)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與直線都經(jīng)過、兩點(diǎn),該拋物線的頂點(diǎn)為C.
(1)求此拋物線和直線的解析式;
(2)設(shè)直線與該拋物線的對(duì)稱軸交于點(diǎn)E,在射線上是否存在一點(diǎn)M,過M作x軸的垂線交拋物線于點(diǎn)N,使點(diǎn)M、N、C、E是平行四邊形的四個(gè)頂點(diǎn)?若存在,求點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)設(shè)點(diǎn)P是直線下方拋物線上的一動(dòng)點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)P的坐標(biāo),并求面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)交軸于A、B兩點(diǎn),(點(diǎn)A在點(diǎn)B的左側(cè))與y軸交于點(diǎn)C,連接AC.
(1)求點(diǎn)A、點(diǎn)B和點(diǎn)C的坐標(biāo);
(2)若點(diǎn)D為第四象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)D的橫坐標(biāo)為m,△BCD的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;
(3)拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△BCP為等腰三角形?若存在,請(qǐng)直接寫出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,AE⊥BD于E,若OE:ED=1:3.AE=,則BD=( 。
A.B.C.4D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC為⊙O的直徑,B為AC延長(zhǎng)線上一點(diǎn),且∠BAD=∠ABD=30°,BC=1,AD為⊙O的弦,連結(jié)BD,連結(jié)DO并延長(zhǎng)交⊙O于點(diǎn)E,連結(jié)BE交⊙O于點(diǎn)M.
(1)求證:直線BD是⊙O的切線;
(2)求⊙O的半徑OD的長(zhǎng);
(3)求線段BM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+4與拋物線y=﹣x2+bx+c交于A,B兩點(diǎn),點(diǎn)A在y軸上,點(diǎn)B在x軸上.
(1)求拋物線的解析式;
(2)在x軸下方的拋物線上存在一點(diǎn)P,使得∠ABP=90°,求出點(diǎn)P坐標(biāo);
(3)點(diǎn)E是拋物線對(duì)稱軸上一點(diǎn),點(diǎn)F是拋物線上一點(diǎn),是否存在點(diǎn)E和點(diǎn)F使得以點(diǎn)E,F,B,O為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),拋物線經(jīng)過A(-5,0),兩點(diǎn),連接AB,BO.
(1)求拋物線表達(dá)式;
(2)點(diǎn)C是第三象限內(nèi)的一個(gè)動(dòng)點(diǎn),若△AOC與△AOB全等,請(qǐng)直接寫出點(diǎn)C坐標(biāo)______;
(3)若點(diǎn)D從點(diǎn)O出發(fā)沿線段OA向點(diǎn)A作勻速運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,同時(shí)線段OA上另一個(gè)點(diǎn)H從點(diǎn)A出發(fā)沿線段AO向點(diǎn)O作勻速運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度(當(dāng)點(diǎn)H到達(dá)點(diǎn)O時(shí),點(diǎn)D也同時(shí)停止運(yùn)動(dòng)).過點(diǎn)D作x軸的垂線,與直線OB交于點(diǎn)E,延長(zhǎng)DE到點(diǎn)F,使得EF=DE,以DF為邊,在DF左側(cè)作等邊三角形DGF(當(dāng)點(diǎn)D運(yùn)動(dòng)時(shí),點(diǎn)G、點(diǎn)F也隨之運(yùn)動(dòng)).過點(diǎn)H作x軸的垂線,與直線AB交于點(diǎn)L,延長(zhǎng)HL到點(diǎn)M,使得LM=HL,以HM為邊,在HM的右側(cè)作等邊三角形HMN(當(dāng)點(diǎn)H運(yùn)動(dòng)時(shí),點(diǎn)M、點(diǎn)N也隨之運(yùn)動(dòng)).當(dāng)點(diǎn)D運(yùn)動(dòng)t秒時(shí),△DGF有一條邊所在直線恰好過△HMN的重心,直接寫出此刻t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角形紙片ABC中,∠C=90°,AC=3cm,BC=4m,點(diǎn)D,E分別在邊AC,AB上,點(diǎn)F是邊BC的中點(diǎn).現(xiàn)將該紙片沿DE折疊,使點(diǎn)A與點(diǎn)F重合,則AE=_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雙曲線(k為常數(shù),且)與直線交于兩點(diǎn).
(1)求k與b的值;
(2)如圖,直線AB交x軸于點(diǎn)C,交y軸于點(diǎn)D,若點(diǎn)E為CD的中點(diǎn),求△BOE的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com