【題目】如圖,在△ABC中,∠ABC=90°,BC=3,D為AC延長線上一點(diǎn),AC=3CD,過點(diǎn)D作DH∥AB,交BC的延長線于點(diǎn)H.
(1)求BDcos∠HBD的值;
(2)若∠CBD=∠A,求AB的長.
【答案】(1)4;(2)6.
【解析】
試題分析:(1)首先根據(jù)DH∥AB,判斷出△ABC∽△DHC,即可判斷出=3;然后求出BH的值是多少,再根據(jù)在Rt△BHD中,cos∠HBD=,求出BDcos∠HBD的值是多少即可;
(2)首先判斷出△ABC∽△BHD,推得;然后根據(jù)△ABC∽△DHC,推得,所以AB=3DH;最后根據(jù),求出DH的值是多少,進(jìn)而求出AB的值是多少即可.
試題解析:(1)∵DH∥AB,∴∠BHD=∠ABC=90°,∴△ABC∽△DHC,∴=3,∴CH=1,BH=BC+CH,在Rt△BHD中,cos∠HBD=,∴BDcos∠HBD=BH=4;
(2)∵∠CBD=∠A,∠ABC=∠BHD,∴△ABC∽△BHD,∴,∵△ABC∽△DHC,∴,∴AB=3DH,∴,解得DH=2,∴AB=3DH=3×2=6,即AB的長是6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個等邊三角形木框,甲蟲P在邊框AC上爬行(A,C端點(diǎn)除外),設(shè)甲蟲P到另外兩邊的距離之和為d,等邊三角形ABC的高為h,則d與h的大小關(guān)系是( )
A.d>h
B.d<h
C.d=h
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強(qiáng),越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C(jī).某自行車行經(jīng)營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價預(yù)計比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:
(1)A型自行車去年每輛售價多少元?
(2)該車行今年計劃新進(jìn)一批A型車和新款B型車共60輛,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍.已知,A型車和B型車的進(jìn)貨價格分別為1500元和1800元,計劃B型車銷售價格為2400元,應(yīng)如何組織進(jìn)貨才能使這批自行車銷售獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AB=15,BC=9,點(diǎn)P,Q分別在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ繞點(diǎn)P旋轉(zhuǎn),得到△PDE,點(diǎn)D落在線段PQ上.
(1)求證:PQ∥AB;
(2)若點(diǎn)D在∠BAC的平分線上,求CP的長;
(3)若△PDE與△ABC重疊部分圖形的周長為T,且12≤T≤16,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】哈市某花卉種植基地欲購進(jìn)甲、乙兩種君子蘭進(jìn)行培育,若購進(jìn)甲種2株,乙種3株,則共需要成本1700元;若購進(jìn)甲種3株,乙種1株,則共需要成本1500元.
(1)求甲乙兩種君子蘭每株成本分別為多少元?
(2)該種植基地決定在成本不超過30000元的前提下購進(jìn)甲、乙兩種君子蘭,若購進(jìn)乙種君子蘭的株數(shù)比甲種君子蘭的3倍還多10株,求最多購進(jìn)甲種君子蘭多少株?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC,AC=BC,∠ACB=90°,AD為角平分線,延長AD交BF于E,E為BF中點(diǎn),下列結(jié)論錯誤的是( )
A.AD=BF
B.CF=CD
C.AC+CD=AB
D.BE=CF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點(diǎn),且AE=CF,直線EF分別交BA的延長線、DC的延長線于點(diǎn)G,H,交BD于點(diǎn)0.
(1)求證:△ABE≌△CDF;
(2)連接DG,若DG=BG,則四邊形BEDF是什幺特殊四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延長線于點(diǎn)E,CE=1,延長CE、BA交于點(diǎn)F.
(1)求證:△ADB≌△AFC;
(2)求BD的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com