【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)的圖像與邊長(zhǎng)是6的正方形的兩邊,分別相交于,兩點(diǎn).
(1)若點(diǎn)是邊的中點(diǎn),求反比例函數(shù)的解析式和點(diǎn)的坐標(biāo);
(2)若,求直線的解析式及的面積
【答案】(1),N(3,6);(2)y=-x+8,S△OMN=16.
【解析】
(1)求出點(diǎn)M坐標(biāo),利用待定系數(shù)法即可求得反比例函數(shù)的解析式,把N點(diǎn)的縱坐標(biāo)代入解析式即可求得橫坐標(biāo);
(2)根據(jù)M點(diǎn)的坐標(biāo)與反比例函數(shù)的解析式,求得N點(diǎn)的坐標(biāo),利用待定系數(shù)法求得直線MN的解析式,根據(jù)△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN即可得到答案.
解:(1)∵點(diǎn)M是AB邊的中點(diǎn),∴M(6,3).
∵反比例函數(shù)y=經(jīng)過點(diǎn)M,∴3=.∴k=18.
∴反比例函數(shù)的解析式為y=.
當(dāng)y=6時(shí),x=3,∴N(3,6).
(2)由題意,知M(6,2),N(2,6).
設(shè)直線MN的解析式為y=ax+b,則
,
解得,
∴直線MN的解析式為y=-x+8.
∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-8=16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,分別是斜邊上的高,中線,,.
(1)若,,求的長(zhǎng);
(2)直接寫出:_______(用含,的代數(shù)式表示);
(3)若,,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,梯形中,,,,動(dòng)點(diǎn)在射線上,以為半徑的交邊于點(diǎn)(點(diǎn)與點(diǎn)不重合),聯(lián)結(jié)、,設(shè),.
(1)求證:;
(2)求關(guān)于的函數(shù)解析式,并寫出定義域;
(3)聯(lián)結(jié),當(dāng)時(shí),以為圓心半徑為的與相交,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,雙曲線經(jīng)過矩形OABC的邊BC的中點(diǎn)E,交AB于點(diǎn)D.設(shè)點(diǎn)B的坐標(biāo)為(m,n).
(1)直接寫出點(diǎn)E的坐標(biāo),并求出點(diǎn)D的坐標(biāo);(用含m,n的代數(shù)式表示)
(2)若梯形ODBC的面積為,求雙曲線的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由7個(gè)同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體( 。
A. 主視圖改變,俯視圖改變 B. 左視圖改變,俯視圖改變
C. 俯視圖不變,左視圖改變 D. 主視圖不變,左視圖不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《中學(xué)生體質(zhì)健康標(biāo)準(zhǔn)》規(guī)定學(xué)生體質(zhì)健康等級(jí)標(biāo)準(zhǔn)為:90分及以上為優(yōu)秀;80分~89分為良好;60分~79分為及格;59分及以下為不及格. 某校從九年級(jí)學(xué)生中隨機(jī)抽取了的學(xué)生進(jìn)行了體質(zhì)測(cè)試,得分情況如下圖.
(1)在抽取的學(xué)生中不及格人數(shù)所占的百分比是 ,它的圓心角度數(shù)為 度.
(2)小明按以下方法計(jì)算出抽取的學(xué)生平均得分是:. 根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí)判斷小明的計(jì)算是否正確,若不正確,請(qǐng)計(jì)算正確結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,點(diǎn)是邊的中點(diǎn),交于點(diǎn),交于點(diǎn),則下列結(jié)論:①;②;③;④,其中正確的答案是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)數(shù)學(xué)小組在課外活動(dòng)中,研究了同一坐標(biāo)系中兩個(gè)反比例函數(shù)與 在第一象限圖象的性質(zhì),經(jīng)歷了如下探究過程:
操作猜想:
(1)如圖①,當(dāng),時(shí),在軸的正方向上取一點(diǎn)作軸的平行線交于點(diǎn),交于點(diǎn).當(dāng)時(shí),________,________,________;當(dāng)時(shí),________,________,________;當(dāng)時(shí),猜想________.
數(shù)學(xué)思考:
(2)在軸的正方向上任意取點(diǎn)作軸的平行線,交于點(diǎn)、交于點(diǎn),請(qǐng)用含、的式子表示的值,并利用圖②加以證明.
推廣應(yīng)用:
(3)如圖③,若,,在軸的正方向上分別取點(diǎn)、 作軸的平行線,交于點(diǎn)、,交于點(diǎn)、,是否存在四邊形是正方形?如果存在,求的長(zhǎng)和點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,在Rt△PFE中,∠EPF=90°,點(diǎn)E、F分別在邊AD、AB上.
(1)如圖1,若點(diǎn)P與點(diǎn)O重合:①求證:AF=DE;②若正方形的邊長(zhǎng)為2,當(dāng)∠DOE=15°時(shí),求線段EF的長(zhǎng);
(2)如圖2,若Rt△PFE的頂點(diǎn)P在線段OB上移動(dòng)(不與點(diǎn)O、B重合),當(dāng)BD=3BP時(shí),證明:PE=2PF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com