【題目】小紅用110根長(zhǎng)短相同的小木棍按照如圖所示的方式,連續(xù)擺正方形或六邊形,要求相鄰的圖形只有一條公共邊.
(1)小紅首先用根小木棍擺出了個(gè)小正方形,請(qǐng)你用等式表示之間的關(guān)系: ;
(2)小紅用剩下的小木棍擺出了一些六邊形,且沒有木棍剩余.已知他擺出的正方形比六邊形多4個(gè),請(qǐng)你求出擺放的正方形和六邊形各多少個(gè)?
(3)小紅重新用50根小木棍,擺出了排,共個(gè)小正方形.其中每排至少含有1個(gè)小正方形,每排含有的小正方形的個(gè)數(shù)可以不同.請(qǐng)你用等式表示之間的關(guān)系,并寫出所有可能的取值.
【答案】(1);(2)正方形有16個(gè),六邊形有12個(gè);(3),,或
【解析】
(1)擺1個(gè)正方形需要4根小木棍,擺2個(gè)正方形需要7根小木棍,擺3個(gè)正方形需要10根小木棍…每多一個(gè)正方形就多3根小木棍,則擺p個(gè)正方形需要4+3(p-1)=3p+1根小木棍,由此求得答案即可;
(2)設(shè)連續(xù)擺放了六邊形x個(gè), 正方形y個(gè),則連續(xù)擺放正方形共用小木棍(3y+1)根,六方形共用小木棍(5x+1)根,由題意列出方程組解決問題即可;
(3)由(1)可知每排用的小木棍數(shù)比這排小正方形個(gè)數(shù)的3倍多1根,由此可得s、t間的關(guān)系,再根據(jù)s、t均為正整數(shù)進(jìn)行討論即可求得所有可能的取值.
(1)擺1個(gè)正方形需要4根小木棍,4=4+3×(1-1),
擺2個(gè)正方形需要7根小木棍,4=4+3×(2-1),
擺3個(gè)正方形需要10根小木棍,10=4+3×(3-1),
……,
擺p個(gè)正方形需要m=4+3×(p-1)=3p+1根木棍,
故答案為:;
(2)設(shè)六邊形有個(gè),正方形有y個(gè),
則,
解得,
所以正方形有16個(gè),六邊形有12個(gè);
(3)據(jù)題意,,
據(jù)題意,,且均為整數(shù),
因此可能的取值為:
,,或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校八年級(jí)體育科目訓(xùn)練情況,從八年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行了一次體育科目測(cè)試(把測(cè)試結(jié)果分為四個(gè)等級(jí):A級(jí):優(yōu)秀;B級(jí):良好;C級(jí):及格;D級(jí):不及格),并將測(cè)試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:
(1)圖1中的度數(shù)是__________,并把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)抽取的這部分的學(xué)生的體育科目測(cè)試結(jié)果的中位數(shù)是在__________級(jí);
(3)依次將優(yōu)秀、良好、及格、不及格記為90分、80分、70分、50分,請(qǐng)計(jì)算抽取的這部分學(xué)生體育的平均成績(jī).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)A的坐標(biāo)為(﹣1,0),與y軸交于點(diǎn)C(0,3),作直線BC.動(dòng)點(diǎn)P在x軸上運(yùn)動(dòng),過點(diǎn)P作PM⊥x軸,交拋物線于點(diǎn)M,交直線BC于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(Ⅰ)求拋物線的解析式和直線BC的解析式;
(Ⅱ)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),求線段MN的最大值;
(Ⅲ)當(dāng)以C、O、M、N為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在直角坐標(biāo)系中,已知A(0,a),B(b,0)C(3,c)三點(diǎn),若a,b,c滿足關(guān)系式:|a﹣2|+(b﹣3)2+=0.
(1)求a,b,c的值.
(2)求四邊形AOBC的面積.
(3)是否存在點(diǎn)P(x,﹣ x),使△AOP的面積為四邊形AOBC的面積的兩倍?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小靜帶著100元錢去文具店購(gòu)買日記本,到文具店她發(fā)現(xiàn)該文具店對(duì)日記本正在開展¨滿100減30”的促銷活動(dòng).即購(gòu)買日記本的費(fèi)用達(dá)到或超過100元就可以少付30元.小靜通過計(jì)算發(fā)現(xiàn),在該店買6個(gè)日記本的費(fèi)用比買5個(gè)日記本的費(fèi)用低.請(qǐng)你計(jì)算一個(gè)日記本的價(jià)格可以是__________元.(設(shè)日記本的價(jià)格為正整數(shù),請(qǐng)寫出所有可能的結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是AB延長(zhǎng)線上一點(diǎn),CD與⊙O相切于點(diǎn)E,AD⊥CD于點(diǎn)D.
(1)求證:AE平分∠DAC;
(2)若AB=4,∠ABE=60°.
①求AD的長(zhǎng);
②求出圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①點(diǎn)O與O′的距離為4;②∠AOB=150°;③.其中正確的結(jié)論是( )
A. ①B. ①②C. ②③D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=900,∠B=∠E=300.
(1)操作發(fā)現(xiàn)如圖2,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn)。當(dāng)點(diǎn)D恰好落在BC邊上時(shí),填空:線段DE與AC的位置關(guān)系是 ;
② 設(shè)△BDC的面積為S1,△AEC的面積為S2。則S1與S2的數(shù)量關(guān)系是 。
(2)猜想論證
當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請(qǐng)你證明小明的猜想。
(3)拓展探究
已知∠ABC=600,點(diǎn)D是其角平分線上一點(diǎn),BD=CD=4,OE∥AB交BC于點(diǎn)E(如圖4),若在射線BA上存在點(diǎn)F,使S△DCF =S△BDC,請(qǐng)直接寫出相應(yīng)的BF的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(-3,0),對(duì)稱軸為直線x=-1,給出以下結(jié)論:①abc<0;②b2-4ac>0;③4b+c<0;④若B(-,y1),C(-,y2)為函數(shù)圖象上的兩點(diǎn),則y1>y2;⑤當(dāng)-3≤x≤1時(shí),y≥0,其中正確的結(jié)論是______.(填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com