【題目】已知△ABC是等腰直角三角形,AB=,把△ABC沿直線(xiàn)BC向右平移得到△DEF.如果E是BC的中點(diǎn),AC與DE交于P點(diǎn),以直線(xiàn)BC為x軸,點(diǎn)E為原點(diǎn)建立直角坐標(biāo)系.
(1)求△ABC與△DEF的頂點(diǎn)坐標(biāo);
(2)判斷△PEC的形狀;
(3)求△PEC的面積.
【答案】(1) A(0,1),B(-1,0),C(1,0),D(1,1),E(0,0),F(2,0);(2)△PEC是等腰直角三角形;(3)S△PEC=.
【解析】整體分析:
(1)根據(jù)勾股定理和平移的性質(zhì)求出△ABC與△DEF的頂點(diǎn)到點(diǎn)E的距離或到點(diǎn)A的距離;(2)根據(jù)平移的性質(zhì)得DE∥AB,即可判斷△PEC的形狀;(3)△PEC的面積等于兩條直角邊乘積的一半.
解:(1)連接AE,CD.
∵△ABC是等腰直角三角形,E是BC的中點(diǎn),
∴AE⊥BC,∴AE2+CE2=2CE2=AC2,∴CE=AC.
∵△DEF是由△ABC平移得到的,
∴CE=AE=BE=CF=CD=AC=×=1,EF=2CE=2.
∴A(0,1),B(-1,0),C(1,0),D(1,1),E(0,0),F(2,0).
(2)根據(jù)平移的性質(zhì),可知DE∥AB,
∴∠PEC=∠B=45°,∠EPC=∠A=90°,
∴△PEC是等腰直角三角形.
(3)S△PEC=PC·PE=PC2=×CE2=.
所以S△PEC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點(diǎn),將Rt△ABC沿CD折疊,使B點(diǎn)落在A(yíng)C邊上的B′處,則∠CDB′等于( )
A.40°
B.60°
C.70°
D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,∠ABC=90°,AB=3,BC=4.點(diǎn)Q是線(xiàn)段AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Q作AC的垂線(xiàn)交線(xiàn)段AB(如圖1)或線(xiàn)段AB的延長(zhǎng)線(xiàn)(如圖2)于點(diǎn)P.
(1)當(dāng)點(diǎn)P在線(xiàn)段AB上時(shí),求證:△AQP∽△ABC;
(2)當(dāng)△PQB為等腰三角形時(shí),求AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AC與BD相交于點(diǎn)O,E是OD的中點(diǎn),連接AE并延長(zhǎng)交DC于點(diǎn)F,則DF:FC=( )
A.1:4
B.1:3
C.1:2
D.1:1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,一個(gè)多邊形的每一個(gè)外角都是它相鄰的內(nèi)角的.試求出:(1)這個(gè)多邊形的每一個(gè)外角的度數(shù);(2)求這個(gè)多邊形的內(nèi)角和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD,點(diǎn)F為正方形ABCD內(nèi)一點(diǎn),△BFC逆時(shí)針旋轉(zhuǎn)后能與△BEA重合.
(1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)角度為 度;
(2)判斷△BEF的形狀為 ;
(3)若∠BFC=90°,說(shuō)明AE∥BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)如圖所示,在四邊形ABCD中,AB=2,BC=2,CD=1,AD=5,且∠C=90°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四邊形ABCD是菱形,AD=5,過(guò)點(diǎn)D作AB的垂線(xiàn)DH,垂足為H,交對(duì)角線(xiàn)AC于M,連接BM,且AH=3.
(1)求證:DM=BM;
(2)求MH的長(zhǎng);
(3)如圖2,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線(xiàn)ABC方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)△PMB的面積為S(S≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式;
(4)在(3)的條件下,當(dāng)點(diǎn)P在邊AB上運(yùn)動(dòng)時(shí)是否存在這樣的 t值,使∠MPB與∠BCD互為余角,若存在,則求出t值,若不存,在請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com