【題目】設(shè)一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,由求根公式x12=可推出x1+x2=﹣,x1x2=,我們把這個(gè)命題叫做韋達(dá)定理.設(shè)α,β是方程x2﹣5x+3=0的兩根,請(qǐng)根據(jù)韋達(dá)定理求下列各式的值:

(1)α+β=   ,αβ=   ;

(2);

(3)2α2﹣3αβ+10β.

【答案】(1)5;3;(2);(3)35.

【解析】

(1)根據(jù)韋達(dá)定理得出α+β=5,αβ=3.

(2)將變形為,再代入數(shù)值計(jì)算即可;

(3)根據(jù)一元二次方程的解的定義得出α2﹣5α+3=0,即α2=5α﹣3,則2﹣3αβ+10β變形為10(α+β)﹣3αβ﹣6,再代入數(shù)值計(jì)算即可.

(1)α,β是方程x2﹣5x+3=0的兩根,

α+β=5,αβ=3.

故答案為:5;3;

(2);

(3)α方程x2﹣5x+3=0的根,

α2﹣5α+3=0,即α2=5α﹣3,

2﹣3αβ+10β=10α﹣6﹣3αβ+10β=10(α+β)﹣3αβ﹣6=10×5﹣3×3﹣6=35.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)經(jīng)過某種變換后得到點(diǎn),我們把點(diǎn)叫做點(diǎn)的終結(jié)點(diǎn).已知點(diǎn)的終結(jié)點(diǎn)為,點(diǎn)的終結(jié)點(diǎn)為,點(diǎn)的終結(jié)點(diǎn)為,這樣依次得到、、,若點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,∠ABC為銳角,ABBC,點(diǎn)EAD上的一點(diǎn),延長(zhǎng)CEF,連接BFAD于點(diǎn)G, 使∠FBCDCE

求證:∠DF

在直線AD找一點(diǎn)P,使以點(diǎn)B、P、C為頂點(diǎn)的三角形與以點(diǎn)C、DP為頂點(diǎn)的三角形相似.(在原圖中標(biāo)出準(zhǔn)確P點(diǎn)的位置,必要時(shí)用直尺和圓規(guī)作出P點(diǎn),保留作圖的痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)B-2,0),點(diǎn)C80),與y軸交于點(diǎn)A

1)求二次函數(shù)y=ax2+bx+4的表達(dá)式;

2)連接AC,AB,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合),過點(diǎn)NNM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求N點(diǎn)的坐標(biāo);

3)連接OM,在(2)的結(jié)論下,求OMAC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(k+1)x+2k﹣2=0.

(1)求證:此方程總有兩個(gè)實(shí)數(shù)根;

(2)若此方程有一個(gè)根大于0且小于1,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A,B是⊙O上的兩點(diǎn),∠AOB=120°,C的中點(diǎn).

(1)如圖1,求∠A的度數(shù);

(2)如圖2,延長(zhǎng)OA至點(diǎn)D,使OA=AD,連接DC,延長(zhǎng)OBDC的延長(zhǎng)線于點(diǎn)E.若⊙O的半徑為1,求DE的長(zhǎng).

1         圖2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),,點(diǎn)Cx軸正半軸上一動(dòng)點(diǎn),過點(diǎn)Ay軸于點(diǎn)E

如圖,若點(diǎn)C的坐標(biāo)為,試求點(diǎn)E的坐標(biāo);

如圖,若點(diǎn)Cx軸正半軸上運(yùn)動(dòng),且 其它條件不變,連接DO,求證:OD平分

若點(diǎn)Cx軸正半軸上運(yùn)動(dòng),當(dāng)時(shí),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.動(dòng)點(diǎn)P、Q分別從點(diǎn)A、B同時(shí)開始移動(dòng),點(diǎn)P的速度為1 cm/秒,點(diǎn)Q的速度為2 cm/秒,點(diǎn)Q移動(dòng)到點(diǎn)C后停止,點(diǎn)P也隨之停止運(yùn)動(dòng)下列時(shí)間瞬間中,能使△PBQ的面積為15cm 的是(

A. 2秒鐘 B. 3秒鐘 C. 4秒鐘 D. 5秒鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,所有正方形的中心均在坐標(biāo)原點(diǎn),且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長(zhǎng)依次為2,4,6,8 …,頂點(diǎn)依次為A1,A2,A3,A4,A5,…,則頂點(diǎn)A55的坐標(biāo)是( )

A. (13,13) B. (-13,-13) C. (-14,-14) D. (14,14)

查看答案和解析>>

同步練習(xí)冊(cè)答案