【題目】已知A,B是⊙O上的兩點(diǎn),∠AOB=120°,C是的中點(diǎn).
(1)如圖1,求∠A的度數(shù);
(2)如圖2,延長(zhǎng)OA至點(diǎn)D,使OA=AD,連接DC,延長(zhǎng)OB交DC的延長(zhǎng)線于點(diǎn)E.若⊙O的半徑為1,求DE的長(zhǎng).
圖1 圖2
【答案】(1)∠A=60°;(2)DE=2.
【解析】
(1)連接OC,有等弧對(duì)等角可得∠AOC=∠AOB=60°.得△OAC是等邊三角形.
(2)根據(jù)等邊三角形性質(zhì),證 OC⊥DE.求得CD=CE=OC=.由等腰三角形性質(zhì)得,DE=2CD=2.
解:(1)連接OC,
∵∠AOB=120°,C是的中點(diǎn),
∴∠AOC=∠AOB=60°.
∵OA=OC,
∴△OAC是等邊三角形.
∴∠A=60°.
(2)∵△OAC是等邊三角形,
∴OA=AC=AD.
∴∠D=30°.
∵∠AOB=120°,
∴∠D=∠E=30°.
∴OC⊥DE.
∵⊙O的半徑為1,
∴CD=CE=OC=.
∴DE=2CD=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字1、2、3、4,另有一個(gè)可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個(gè)扇形區(qū),分別標(biāo)有數(shù)字1、2、3(如圖所示).小穎和小亮想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一個(gè)人轉(zhuǎn)動(dòng)圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.
(1)用樹狀圖或列表法求出小穎參加比賽的概率;
(2)你認(rèn)為該游戲公平嗎?請(qǐng)說明理由;若不公平,請(qǐng)修改該游戲規(guī)則,使游戲公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,ΔABC中,AD⊥BC于點(diǎn)D,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向ΔABC外作等腰RtΔABE和等腰RtΔACF,過點(diǎn)E、F作射線DA的垂線,垂足分別為Q、P.
(1)試探究線段EQ和FP之間的數(shù)量關(guān)系,并說明理由.
(2)如圖②,若連接EF交DA的延長(zhǎng)線于點(diǎn)H,由(1)中的結(jié)論你能判斷EH與FH的大小關(guān)系嗎?并說明理由.
(3)圖②中的ΔABC與ΔAEF的面積相等嗎?(直接給出結(jié)論,不需要說理)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,過頂點(diǎn)A的直線DE∥BC,∠ABC,∠ACB的平分線分別交DE于點(diǎn)E、D,若AC=3, BC=5,則DE的長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,由求根公式x1,2=可推出x1+x2=﹣,x1x2=,我們把這個(gè)命題叫做韋達(dá)定理.設(shè)α,β是方程x2﹣5x+3=0的兩根,請(qǐng)根據(jù)韋達(dá)定理求下列各式的值:
(1)α+β= ,αβ= ;
(2);
(3)2α2﹣3αβ+10β.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子里共有2個(gè)黃球和3個(gè)白球,每個(gè)球除顏色外都相同,小亮從袋子中任意摸出一個(gè)球,結(jié)果是白球,則下面關(guān)于小亮從袋中摸出白球的概率和頻率的說明正確的是( )
A. 小亮從袋中任意摸出一個(gè)球,摸出白球的概率是1
B. 小亮從袋中任意摸出一個(gè)球,摸出白球的概率是0
C. 在這次實(shí)驗(yàn)中,小亮摸出白球的頻率是1
D. 由這次實(shí)驗(yàn)的頻率去估計(jì)小亮從袋中任意摸出一個(gè)球,摸出白球的概率是1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AC∥BD,請(qǐng)先作圖再解決問題.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡.(不要求寫作法)
①作BE平分∠ABD交AC于點(diǎn)E;
②在BA的延長(zhǎng)線上截取AF=BA,連接EF;
(2)判斷△BEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的方程x2-ax+a2-3=0至少有一個(gè)正根,則實(shí)數(shù)a的取值范圍是( 。
A. -2<a<2 B. <a≤2 C. <a≤2 D. ≤a≤2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的周長(zhǎng)為20.
(1)尺規(guī)作圖,畫出線段AB的垂直平分線(不寫作法,保留作圖痕跡);
(2)設(shè)AB的垂直平分線與BA交于點(diǎn)D,與BC交于點(diǎn)E,若AD=4,求△ACE的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com