【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,菱形ABCD的頂點Bx軸的正半軸上,點A坐標(biāo)為(-4,0),點D的坐標(biāo)為(-1,4),反比例函數(shù)的圖象恰好經(jīng)過點C,則k的值為______.

【答案】16

【解析】

過點DDHx軸,垂足為H,由已知則可得H(-1,0),DH=4,根據(jù)點A(-4,0),可得AH=3,要賣勾股定理可求得AD長,再根據(jù)菱形的性質(zhì)可得DC=AD=5,DC//AB,根據(jù)平移的性質(zhì)可得C(44),再利用待定系數(shù)法即可求得答案.

過點DDHx軸,垂足為H,則∠AHD=90°,

又∵D(-14),

H(-10),DH=4

A(-4,0),

AH=3,

AD==5,

∵四邊形ABCD是菱形,

∴DC=AD=5,DC//AB,

∴C(4,4)

∵反比例函數(shù)的圖象恰好經(jīng)過點C,

4=,

k=16,

故答案為16.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,//,且分別交對角線AC于點E,F,連接BE,DF

1)求證:AE=CF;

2)若BE=DE,求證:四邊形EBFD為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,AB的直徑,C上一點,P的中點,過點PAC的垂線,交AC的延長線于點D

1)求證:DP的切線;

2)若AC=5,,AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:△ABC和△ADE按如圖所示方式放置,點D在△ABC內(nèi),連接BD、CDCE,且∠DCE90°.

1)如圖,當(dāng)△ABC和△ADE均為等邊三角形時,試確定AD、BDCD三條線段的關(guān)系,并說明理由;

2)如圖,當(dāng)BABC2ACDADE2AE時,試確定AD、BD、CD三條線段的關(guān)系,并說明理由;

3)如圖,當(dāng)ABBCACADDEAEmnp時,請直接寫出AD、BD、CD三條線段的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個矩形紙片,將該紙片放置在平面直角坐標(biāo)系中,點,點,點P邊上的動點.

(1)如圖①,經(jīng)過點O、P折疊該紙片,得點和折痕.當(dāng)點P的坐標(biāo)為時,求的度數(shù);

(2)如圖②,當(dāng)點P與點C重合時,經(jīng)過點O、P折疊紙片,使點B落在點的位置,交于點M,求點M的坐標(biāo);

(3)過點P作直線,交于點Q,再取中點T,中點N,分別以,,為折痕,依次折疊該紙片,折疊后點O的對應(yīng)點與點B的對應(yīng)點恰好重合,且落在線段上,AC的對應(yīng)點也恰好重合,也落在線段上,求此時點P的坐標(biāo)(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象相交于點,反比例函數(shù)的圖象經(jīng)過點.

1)求反比例函數(shù)的表達式;

2)設(shè)一次函數(shù) 的圖象與反比例函數(shù) 的圖象的另一個交點為,連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一種升降熨燙臺如圖1所示,其原理是通過改變兩根支撐桿夾角的度數(shù)來調(diào)整熨燙臺的高度.圖2是這種升降熨燙臺的平面示意圖.ABCD是兩根相同長度的活動支撐桿,點O是它們的連接點,OA=OC,hcm)表示熨燙臺的高度.

1)如圖21.若AB=CD=110cm,∠AOC=120°,求h的值;

2)愛動腦筋的小明發(fā)現(xiàn),當(dāng)家里這種升降熨燙臺的高度為120cm時,兩根支撐桿的夾角∠AOC74°(如圖22).求該熨燙臺支撐桿AB的長度(結(jié)果精確到lcm).

(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,sin53°≈0.8,cos53°≈0.6.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+6經(jīng)過兩點A(﹣10),B3,0),C是拋物線與y軸的交點.

1)求拋物線的解析式;

2)點Pm,n)在平面直角坐標(biāo)系第一象限內(nèi)的拋物線上運動,設(shè)△PBC的面積為S,求S關(guān)于m的函數(shù)表達式(指出自變量m的取值范圍)和S的最大值;

3)點M在拋物線上運動,點Ny軸上運動,是否存在點M、點N使得∠CMN90°,且△CMN與△OBC相似,如果存在,請求出點M和點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為檢測師生體溫,在校門安裝了某型號測溫門.如圖為該測溫門截面示意圖,已知測溫門AD的頂部A處距地面高為2.2m,為了解自己的有效測溫區(qū)間.身高1.6m的小聰做了如下實驗:當(dāng)他在地面N處時測溫門開始顯示額頭溫度,此時在額頭B處測得A的仰角為18°;在地面M處時,測溫門停止顯示額頭溫度,此時在額頭C處測得A的仰角為60°.求小聰在地面的有效測溫區(qū)間MN的長度.(額頭到地面的距離以身高計,計算精確到0.1m,sin18°≈0.31,cos18°≈0.95tan18°≈0.32

查看答案和解析>>

同步練習(xí)冊答案