【題目】如圖①,在等腰直角三角形中,,DE分別在上,且,此時有,

(1)如圖①中 繞點A旋轉至如圖②時上述結論是否仍然成立?若成立,請證明;若不成立,請說明理由.

(2)將圖①中的繞點A旋轉至DE與直線AC垂直,直線BDCE于點F,若,,請畫出圖形,并求出BF的長.

【答案】(1)仍然成立;(2)畫圖見解析;長為.

【解析】

1)結論:BDCEBDCE.如圖1中,延長BDCE的延長線于H.證明△BAD≌△CAESAS),即可解決問題;(2)分兩種中情況分別求解當逆時針旋轉角度是45°時,當逆時針旋轉角度是225°時,先證明△ABD≌△ACESAS),從而求解DEEC 的邊長,再通過角的代換證明BFEC,再證明RtDEFRtCEG,通過對應邊成比例,求出FC的長度,最后再直角三角形△BCF用勾股定理求得BF的長度.

解:(1) 仍然成立

延長交于點,

都是等腰直角三角形,

,

,

,

,

, ,

;

(2)如圖,長為,

DE與直線AC垂直,

當逆時針旋轉角度是45°時,如圖2

在△ABD和△ACE中,

AEAD,∠BAD=∠CAE45°,ABAC

∴△ABD≌△ACESAS

BDEC,

AB20,AD5,

AC20AE5,

∵∠DAE90°,

DE10,

∵△AED是等腰直角三角形,

AGGE5,

GC15,

在直角三角形GEC中,EC5,

又∵∠ABD=∠ACE,∠BCA45°,∠ABC45°,

∴∠DBC+BCA+ACE90°,

BFEC,

∵∠EFD=∠EGC90°,∠EDF=∠ECG,

RtDEFRtCEG,

,

,

EF,

FC4

RtABC中,BC20,

RtBCF中,BF;

當逆時針旋轉角度是225°時,如圖3

在△ABD和△ACE中,

AEAD,BAD=∠CAE45°,ABAC,

∴△ABD≌△ACESAS

BDEC,

AB20,AD5,

AC20AE5,

∵∠DAE90°,

DE10,

∵△AED是等腰直角三角形,

AGGE5

GC25,

在直角三角形GEC中,EC5,

又∵∠ABD=∠ACE,∠ABC45°,∠ACB45°,

∴∠DBA+ABC+ACE90°,

BFEC,

∵∠EFD=∠EGC90°,∠EDF=∠ECG,

RtDEFRtCEG,

,

EF,

FC

RtABC中,BC20,

RtBCF中,BF;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若正整數(shù)ab,cabc)滿足a2+b2c2,則稱(a,b,c)為一組勾股數(shù)

觀察下列兩類勾股數(shù)

第一類(a是奇數(shù)):(3,4,5);(5,1213);(7,24,25);

第二類(a是偶數(shù)):(6,8,10);(8,1517);(10,24,26);

1)請再寫出兩組勾股數(shù),每類各寫一組;

2)分別就a為奇數(shù)、偶數(shù)兩種情形,用a表示bc,并選擇其中一種情形證明(a,bc)是勾股數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點OBC邊上,以OC為半徑作⊙O,與AB切于點D,與邊BC,AC分別交于點E,F,且弧DE=弧DF

1)求證:△ABC是直角三角形.

2)連結CDOF于點P,當cosB時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調查統(tǒng)計,現(xiàn)從該校隨機抽取n名學生作為樣本,采用問卷調查的方式收集數(shù)據(參與問卷調查的每名學生只能選擇其中一項).并根據調查得到的數(shù)據繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中提供的信息,解答下列問題:

1)請直接補全條形統(tǒng)計圖;

2)若該校共有學生3200名,試估計該校喜愛看課外書的學生人數(shù)。

3)若被調查喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名,請用列表或畫樹狀圖的方法求恰好抽2名男生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形的對角線相交于點,,則下列條件中不能判定四邊形為平行四邊形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點EBC上一點,BFAEDC于點F,若AB5,BE2,則AF____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料

計算:(1×+)﹣(1)(+),令+t,則:

原式=(1t)(t+)﹣(1ttt+t2+t2

在上面的問題中,用一個字母代表式子中的某一部分,能達到簡化計算的目的,這種思想方法叫做換元法,請用換元法解決下列問題:

1)計算:(1×+)﹣(1×+

2)因式分解:(a25a+3)(a25a+7+4

3)解方程:(x2+4x+1)(x2+4x+3)=3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,且AB2CDE,F分別是ABBC的中點,EFBD交于點H

1)求證:四邊形DEBC是平行四邊形;

2)若BD6,求DH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知ABBC于點B,底座BC的長為1米,底座BC與支架AC所成的角∠ACB60°,點H在支架AF上,籃板底部支架EHBC,EFEH于點E,已知AH米,HF米,HE1米.

(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).

(2)求籃板底部點E到地面的距離.(結果保留根號)

查看答案和解析>>

同步練習冊答案