【題目】如圖,在四邊形ABCD中,ABCD,且AB2CDE,F分別是AB,BC的中點(diǎn),EFBD交于點(diǎn)H

1)求證:四邊形DEBC是平行四邊形;

2)若BD6,求DH的長(zhǎng).

【答案】1)見(jiàn)解析;(2DH4

【解析】

1)由AB=2CD,EAB的中點(diǎn)得出DC=BE,再結(jié)合ABCD即可得證;

2)先證EDM∽△FBM,由BC=DEFBC的中點(diǎn)得出=2,繼而知DH=2HB,結(jié)合DH+HB=6可得答案.

1)∵EAB的中點(diǎn),

AB2EB,

AB2CD,

DCBE,

又∵ABCD,即DCBE

∴四邊形BCDE是平行四邊形.

2)∵四邊形BCDE是平行四邊形,

BCDEBCDE,

∴△EDM∽△FBM

,

BCDE,FBC的中點(diǎn),

BFBCDE

2,

DH2HB,

又∵DH+HB6,

DH4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的一元二次方程(x-2)(x-3)=m有實(shí)數(shù)根x1,x2,且x1x2.

(1)求m的取值范圍;

(2)如果這個(gè)方程的兩個(gè)實(shí)根分別為x1=αx2,且αβ,當(dāng)m>0時(shí),試比較αβ,2,3的大小,并用“<”連接;

(3)求二次函數(shù)y=(xx1)(xx2)+m的圖像與x軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在等腰直角三角形中,,D,E分別在上,且,此時(shí)有,

(1)如圖①中 繞點(diǎn)A旋轉(zhuǎn)至如圖②時(shí)上述結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

(2)將圖①中的繞點(diǎn)A旋轉(zhuǎn)至DE與直線AC垂直,直線BDCE于點(diǎn)F,若,請(qǐng)畫(huà)出圖形,并求出BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市304國(guó)道通遼至霍林郭勒段在修建過(guò)程中經(jīng)過(guò)一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結(jié)果取整數(shù),參考數(shù)據(jù)≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)直角三角形紙片OAB,其中AOB=90°,OA=2OB=4.如圖,將該紙片放置在平面直角坐標(biāo)系中,折疊該紙片,折痕與邊OB交于點(diǎn)C,與邊AB交于點(diǎn)D

1)若折疊后使點(diǎn)B與點(diǎn)A重合,求點(diǎn)C的坐標(biāo);

2)若折疊后點(diǎn)B落在邊OA上的點(diǎn)為B,設(shè)OB′=x,OC=y,試寫(xiě)出y關(guān)于x的函數(shù)解析式,并確定y的取值范圍;

3)若折疊后點(diǎn)B落在邊OA上的點(diǎn)為B,且使BD//OB,求此時(shí)點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)計(jì)算: 2sin45°+2π01;

2先化簡(jiǎn),再求值 a2b2),其中a=b=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O是邊長(zhǎng)為2的正方形ABCD的中心.函數(shù)y=(xh2的圖象與正方形ABCD有公共點(diǎn),則h的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a<0)的圖象與x軸的兩個(gè)交點(diǎn)A、B的橫坐標(biāo)分別為﹣3、1,與y軸交于點(diǎn)C,下面四個(gè)結(jié)論:①16a+4b+c<0;②P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點(diǎn),則y1>y2;③c=﹣3a;④△ABC是等腰三角形,則b=﹣或﹣.其中正確的有_____.(請(qǐng)將正確結(jié)論的序號(hào)全部填在橫線上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將△ABC紙片沿中位線EH折疊,使點(diǎn)A對(duì)稱(chēng)點(diǎn)D落在BC邊上,再將紙片分別沿等腰△BED和等腰△DHC的底邊上的高線EF,HG折疊,折疊后的三個(gè)三角形拼合形成一個(gè)矩形,類(lèi)似地,對(duì)多邊形進(jìn)行折疊,若翻折后的圖形恰能拼合成一個(gè)無(wú)縫隙、無(wú)重疊的矩形,這樣的矩形稱(chēng)為疊合矩形.

(1)將ABCD紙片按圖2的方式折疊成一個(gè)疊合矩形AEFG,則操作形成的折痕分別是線段_______,_________;S矩形AEFG:S□ABCD=__________

(2)ABCD紙片還可以按圖3的方式折疊成一個(gè)疊合矩形EFGH,若EF=5,EH=12,求AD的長(zhǎng);

(3)如圖4,四邊形ABCD紙片滿足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把該紙片折疊,得到疊合正方形,請(qǐng)你幫助畫(huà)出一種疊合正方形的示意圖,并求出AD、BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案