【題目】如果三角形滿足一個角是另一個角的3倍,那么我們稱這個三角形為“智慧三角形”.下列各組數(shù)據(jù)中,能作為一個智慧三角形三邊長的一組是( )
A.1,2,3
B.1,1,
C.1,1,
D.1,2,
【答案】D
【解析】解:A、∵1+2=3,不能構(gòu)成三角形,故選項錯誤; B、∵12+12=( )2 , 是等腰直角三角形,故選項錯誤;
C、底邊上的高是 = ,可知是頂角120°,底角30°的等腰三角形,故選項錯誤;
D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定義,故選項正確.
故選:D.
A、根據(jù)三角形三邊關(guān)系可知,不能構(gòu)成三角形,依此即可作出判定;
B、根據(jù)勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;
C、解直角三角形可知是頂角120°,底角30°的等腰三角形,依此即可作出判定;
D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,依此即可作出判定.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛貨車從甲地勻速駛往乙地,到達后用了半小時卸貨,隨即勻速返回,已知貨車返回的速度是它從甲地駛往乙地的速度的1.5倍.貨車離甲地的距離y(千米)關(guān)于時間x(小時)的函數(shù)圖象如圖所示.則a=(小時).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將透明三角形紙片PAB的直角頂點P落在第四象限,頂點A、B分別落在反比例函數(shù)y= 圖象的兩支上,且PB⊥x于點C,PA⊥y于點D,AB分別與x軸,y軸相交于點E、F.已知B(1,3).
(1)k=;
(2)試說明AE=BF;
(3)當四邊形ABCD的面積為 時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點M為DE的中點,過點E與AD平行的直線交射線AM于點N.
(1)當A,B,C三點在同一直線上時(如圖1),求證:M為AN的中點;
(2)將圖1中的△BCE繞點B旋轉(zhuǎn),當A,B,E三點在同一直線上時(如圖2),求證:△ACN為等腰直角三角形;
(3)將圖1中△BCE繞點B旋轉(zhuǎn)到圖3位置時,(2)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三個小球分別標有﹣2,0,1三個數(shù),這三個球除了標的數(shù)不同外,其余均相同,將小球放入一個不透明的布袋中攪勻.
(1)從布袋中任意摸出一個小球,將小球上所標之數(shù)記下,然后將小球放回袋中,攪勻后再任意摸出一個小球,再記下小球上所標之數(shù),求兩次記下之數(shù)的和大于0的概率.(請用“畫樹狀圖”或“列表”等方法給出分析過程,并求出結(jié)果)
(2)從布袋中任意摸出一個小球,將小球上所標之數(shù)記下,然后將小球放回袋中,攪勻后再任意摸出一個小球,將小球上所標之數(shù)再記下,…,這樣一共摸了13次.若記下的13個數(shù)之和等于﹣4,平方和等于14.求:這13次摸球中,摸到球上所標之數(shù)是0的次數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某研究所將某種材料加熱到1000℃時停止加熱,并立即將材料分為A、B兩組,采用不同工藝做降溫對比實驗,設(shè)降溫開始后經(jīng)過x min時,A、B兩組材料的溫度分別為yA℃、yB℃,yA、yB與x的函數(shù)關(guān)系式分別為yA=kx+b,yB= (x﹣60)2+m(部分圖象如圖所示),當x=40時,兩組材料的溫度相同.
(1)分別求yA、yB關(guān)于x的函數(shù)關(guān)系式;
(2)當A組材料的溫度降至120℃時,B組材料的溫度是多少?
(3)在0<x<40的什么時刻,兩組材料溫差最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB為等腰三角形,頂點A的坐標(2, ),底邊OB在x軸上.將△AOB繞點B按順時針方向旋轉(zhuǎn)一定角度后得△A′O′B,點A的對應(yīng)點A′在x軸上,則點O′的坐標為( )
A.( , )
B.( , )
C.( , )
D.( ,4 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y= x2﹣x+a與x軸交于點A,B,與y軸交于點C,其頂點在直線y=﹣2x上.
(1)求a的值;
(2)求A,B的坐標;
(3)以AC,CB為一組鄰邊作ACBD,則點D關(guān)于x軸的對稱點D′是否在該拋物線上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B(3,0),與y軸交于點C,連接BC交拋物線的對稱軸于點E,D是拋物線的頂點.
(1)求此拋物線的解析式;
(2)直接寫出點C和點D的坐標;
(3)若點P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE , 求P點坐標. 注:二次函數(shù)y=ax2+bx+c(a≠0)的頂點坐標為(﹣ , )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com