12
x2-9
=1-
2
x+3
分析:分式方程去分母轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗(yàn)即可得到分式方程的解.
解答:解:去分母得:12=x2-9-2(x-3),
整理得:x2-2x-15=0,即(x-5)(x+3)=0,
解得:x1=5,x2=-3,
經(jīng)檢驗(yàn)x=-3是增根,分式方程的解為x=5.
點(diǎn)評:此題考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解.解分式方程一定注意要驗(yàn)根.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2011•鞍山)如圖,在平面直角坐標(biāo)系中,正方形ABCD的邊長為
5
,點(diǎn)A在y軸正半軸上,點(diǎn)B在x軸負(fù)半軸上,B(-1,0),C、D兩點(diǎn)在拋物線y=
1
2
x2+bx+c上.
(1)求此拋物線的表達(dá)式;
(2)正方形ABCD沿射線CB以每秒
5
個單位長度平移,1秒后停止,此時B點(diǎn)運(yùn)動到B1點(diǎn),試判斷B1點(diǎn)是否在拋物線上,并說明理由;
(3)正方形ABCD沿射線BC平移,得到正方形A2B2C2D2,A2點(diǎn)在x軸正半軸上,求正方形ABCD的平移距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•德陽模擬)把拋物線解析式y=
1
2
x2+x-
5
2
通過配方后得到的解析式是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=-
12
x2+bx+c的圖象經(jīng)過A(2,0),B(0,-6)兩點(diǎn).
(1)求這個二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積和周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,將一塊腰長為
5
的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(-1,0),點(diǎn)B在拋物線y=ax2+ax-2上,
(1)點(diǎn)A的坐標(biāo)為
(0,2)
(0,2)
,點(diǎn)B的坐標(biāo)為
(-3,1)
(-3,1)
;拋物線的解析式為
y=
1
2
x2+
1
2
x-2
y=
1
2
x2+
1
2
x-2

(2)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP是以AC為直角邊的直角三角形?若存在,請求出所有點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)若點(diǎn)D是(1)中所求拋物線在第三象限內(nèi)的一個動點(diǎn),連接BD、CD.當(dāng)△BCD的面積最大時,求點(diǎn)D的坐標(biāo).
(4)若點(diǎn)P是(1)中所求拋物線上一個動點(diǎn),以線段AB、BP為鄰邊作平行四邊形ABPQ.當(dāng)點(diǎn)Q落在x軸上時,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•蘇州)已知x-
1
x
=3,則4-
1
2
x2+
3
2
x的值為( 。

查看答案和解析>>

同步練習(xí)冊答案