分析:(1)設(shè)點(diǎn)C表示的數(shù)是x.由BC=
AB列出方程|x-2|=
×(2+4),解方程即可;
(2)設(shè)點(diǎn)C表示的數(shù)是x.
①分兩種情況進(jìn)行討論:Ⅰ)當(dāng)點(diǎn)C在點(diǎn)B的右側(cè)時(shí),如圖1所示,由AC-AB=2列出方程(x-m)-(n-m)=2,解方程即可;Ⅱ)當(dāng)點(diǎn)C在點(diǎn)A的左側(cè)時(shí),如圖2所示,由AC-AB=2列出方程(m-x)-(n-m)=2,解方程即可;
②由AD=2AC,可得點(diǎn)C在線段AD上或點(diǎn)C在點(diǎn)A的左側(cè).當(dāng)動(dòng)點(diǎn)D在線段AB上時(shí),無(wú)論C在任何位置均不合題意;當(dāng)動(dòng)點(diǎn)D在點(diǎn)B的右側(cè)時(shí),分三種討論進(jìn)行情況:Ⅰ)當(dāng)點(diǎn)C在線段BD的延長(zhǎng)線上時(shí),點(diǎn)C為線段AD的中點(diǎn),當(dāng)點(diǎn)C在線段BD上時(shí),如圖3所示,則AD=3n-3m;Ⅱ)當(dāng)點(diǎn)C在線段AB上時(shí),如圖4所示,則AD=
n-
m;Ⅲ)當(dāng)點(diǎn)C在點(diǎn)A左側(cè)時(shí),不合題意.
解答:解:(1)設(shè)點(diǎn)C表示的數(shù)是x.
∵點(diǎn)A,B表示的數(shù)分別為-4,2,且BC=
AB,
∴|x-2|=
×(2+4),
解得x=-1或5.
故答案為-1或5;
(2)設(shè)點(diǎn)C表示的數(shù)是x,由m<n,可得點(diǎn)A在點(diǎn)B的左側(cè),AB=n-m.
①由AC-AB=2,得AC>AB.分兩種情況:
Ⅰ)當(dāng)點(diǎn)C在點(diǎn)B的右側(cè)時(shí),如圖1所示,此時(shí)AC=x-m.
∵AC-AB=2,
∴(x-m)-(n-m)=2,
解得x=n+2.
∴點(diǎn)C表示的數(shù)是n+2;
Ⅱ)當(dāng)點(diǎn)C在點(diǎn)A的左側(cè)時(shí),如圖2所示,此時(shí)AC=m-x.
∵AC-AB=2,
∴(m-x)-(n-m)=2,
解得x=2m-n-2.
∴點(diǎn)C表示的數(shù)是2m-n-2.
綜上,點(diǎn)C表示的數(shù)是n+2,2m-n-2;
②由AD=2AC,可得點(diǎn)C在線段AD上或點(diǎn)C在點(diǎn)A的左側(cè).
當(dāng)動(dòng)點(diǎn)D在線段AB上時(shí),無(wú)論C在任何位置均不合題意;
當(dāng)動(dòng)點(diǎn)D在點(diǎn)B的右側(cè)時(shí),分三種情況:
Ⅰ)當(dāng)點(diǎn)C在線段BD的延長(zhǎng)線上時(shí),點(diǎn)C為線段AD的中點(diǎn),
當(dāng)點(diǎn)C在線段BD上時(shí),如圖3所示,
則AD=3n-3m;
Ⅱ)當(dāng)點(diǎn)C在線段AB上時(shí),如圖4所示,
則AD=
n-
m;
Ⅲ)當(dāng)點(diǎn)C在點(diǎn)A左側(cè)時(shí),不合題意.
綜上所述,線段AD的長(zhǎng)為3n-3m或
n-
m.