【題目】如圖,C為以AB為直徑的⊙O上一點(diǎn),AD和過(guò)點(diǎn)C的切線互相垂直,垂足為點(diǎn)D.

(1)求證:AC平分∠BAD;

(2)若CD=3,AC=3,求⊙O的半徑長(zhǎng).

【答案】1)證明:連結(jié)OC(如圖所示)

ACO=CAO (等腰三角形,兩底角相等)

CDOC,COCD.

ADCD

∴AD∥CO

∴∠DAC=ACO (兩直線平行,內(nèi)錯(cuò)角相等)

∴∠DAC=CAO

AC平分BAD ----------------5

2)過(guò)點(diǎn)EOE⊥ACE(如圖所示)

RtADC中,AD==6

OEAC, AE=AC=

∵ ∠CAO=DAC,AEO=ADC=Rt

∴△AEOADC

AO=O的半徑為. ----------------5

【解析】

試題(1)首先連接OC,由CD⊙OC,根據(jù)切線的性質(zhì),可得OC⊥CD,又由AD⊥CD,可得OC∥AD,又由OA=OC,易證得∠DAC=∠CAO,即AC平分∠BAD;

2)首先過(guò)點(diǎn)OOE⊥ACE,由CD=3,AC=3,在Rt△ADC中,利用勾股定理即可求得AD的長(zhǎng),由垂徑定理,即可得AE的長(zhǎng),然后易證得△AEO∽△ADC,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得⊙O的半徑長(zhǎng).

試題解析:(1)證明:連接OC,

∵OA=OC,

∴∠ACO=∠CAO

∵CD⊙OC,

∴CO⊥CD

∵AD⊥CD,

∴AD∥CO

∴∠DAC=∠ACO,

∴∠DAC=∠CAO,

∴AC平分∠BAD;

2)解:過(guò)點(diǎn)OOE⊥ACE,

∵CD=3AC=3,

Rt△ADC中,AD=

∵OE⊥AC,

∴AE=AC=

∵∠CAO=∠DAC,∠AEO=∠ADC=90°,

∴△AEO∽△ADC,

,

∴AO=

⊙O的半徑為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A(-2,n),B1,-2)是一次函數(shù)ykxb的圖象和反比例函數(shù)y的圖象的兩個(gè)交點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)根據(jù)圖象寫出,當(dāng)kxb<時(shí),x的取值范圍;

3)若Cx軸上一動(dòng)點(diǎn),設(shè)tCBCA,求t的最大值,并求出此時(shí)點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形為矩形,四邊形為菱形.

求證:;

試探究:當(dāng)矩形邊長(zhǎng)滿足什么關(guān)系時(shí),菱形為正方形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,EAD的中點(diǎn),延長(zhǎng)CE,BA交于點(diǎn)F,連接AC,DF

(1)求證:四邊形ACDF是平行四邊形;

(2)當(dāng)CF平分∠BCD時(shí),寫出BCCD的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)邊長(zhǎng)為3的等邊△ABC的邊AB上一點(diǎn)P,作PEACE,QBC延長(zhǎng)線上一點(diǎn),當(dāng)PACQ時(shí),連PQAC邊于D,則DE的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,平分,于點(diǎn),過(guò)點(diǎn),的延長(zhǎng)線于點(diǎn),的延長(zhǎng)線于點(diǎn),

1)求證:;

2)如圖,連接、,求證平分;

3)如圖,連接于點(diǎn), 的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一艘輪船在處測(cè)得燈塔在船的南偏東60°方向,輪船繼續(xù)向正東航行30海里后到達(dá)處,這時(shí)測(cè)得燈塔在船的南偏西75°方向,則燈塔離觀測(cè)點(diǎn)、的距離分別是(

A.海里、15海里B.海里、15海里

C.海里、海里D.海里、海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形內(nèi)接于半圓為直徑,,過(guò)點(diǎn)于點(diǎn),連接于點(diǎn)F.,則的長(zhǎng)為 ( 。

A.8B.10C.15D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩種客車,2輛甲種客車與3輛乙種客車的總載客量為180人,1輛甲種客車與2輛乙種客車的總載客量為105人.

1)請(qǐng)問(wèn)1輛甲種客車與1輛乙種客車的載客量分別為多少人?

2)某學(xué)校組織240名師生集體外出活動(dòng),擬租用甲、乙兩種客車共6輛,一次將全部師生送到指定地點(diǎn).若每輛甲種客車的租金為400元,每輛乙種客車的租金為280元,請(qǐng)給出最節(jié)省費(fèi)用的租車方案,并求出最低費(fèi)用.

查看答案和解析>>

同步練習(xí)冊(cè)答案