【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.
在等邊三角形ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長(zhǎng)線上,且ED=EC,如圖.試確定線段AE與DB的大小關(guān)系,并說(shuō)明理由. |
小敏與同桌小聰討論后,進(jìn)行了如下解答:
(1)特殊情況,探索結(jié)論
當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線段AE與的DB大小關(guān)系.請(qǐng)你直接寫出結(jié)論:
AE DB(填“>”,“<”或“=”).
圖1 圖2
(2)特例啟發(fā),解答題目
解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).
理由如下:如圖2,過(guò)點(diǎn)E作EF∥BC,交AC于點(diǎn)F.
(請(qǐng)你完成以下解答過(guò)程)
(3)拓展結(jié)論,設(shè)計(jì)新題
在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC.若△ABC的邊長(zhǎng)為1,AE=2,求CD的長(zhǎng)(請(qǐng)你直接寫出結(jié)果).
【答案】(1)=;(2)=,過(guò)程見解析;(3)CD的長(zhǎng)是1或3.
【解析】試題分析:(1)根據(jù)△ABC是等邊三角形,點(diǎn)E為AB的中點(diǎn),即可得出CE⊥AB,進(jìn)而得出∠ECB=∠D=∠DEB=30°,即可得出線段AE與DB的大小關(guān)系;
(2)首先得出BE=CF,進(jìn)而得出∠EDB=∠ECB,∠BED=∠FCE,進(jìn)而利用△DBE≌△EFC即可得出答案;
(3)分兩種情況進(jìn)行討論,①當(dāng)E在線段BA的延長(zhǎng)線上,D在線段BC的延長(zhǎng)線上;②當(dāng)E在線段AB的延長(zhǎng)線上,D在線段CB的延長(zhǎng)線上.
試題解析:(1)∵△ABC是等邊三角形,點(diǎn)E為AB的中點(diǎn),
∴∠ABC=60°,CE⊥AB,
∴AE=BE,
∴∠ECB=∠D=∠DEB=30°,
∴AE=DB,
故答案為:=;
(2) 在等邊△ABC中,
∠ABC=∠ACB=∠BAC=60°,AB=BC=AC,
∵EF∥BC,
∴∠AEF=∠AFE=60°=∠BAC,
∴AE=AF=EF,
∴AB-AE=AC-AF,
即BE=CF,
∵∠ABC=∠EDB+∠BED=60°,
∠ACB=∠ECB+∠FCE=60°,
∵ED=EC,
∴∠EDB=∠ECB,
∵∠EBC=∠EDB+∠BED,∠ACB=∠ECB+∠FCE,
∴∠BED=∠FCE,
∴△DBE≌△EFC(SAS)
∴DB=EF,
∴AE=BD,
故答案為:=;
(3)CD的長(zhǎng)是1或3.
參考做法如下:
當(dāng)E在線段BA的延長(zhǎng)線上,D在線段BC的延長(zhǎng)線上時(shí),如圖1所示,
過(guò)E作EF⊥BD,垂足為F點(diǎn),可得∠EFB=90°,
∵EC=ED,∴F為CD的中點(diǎn),即CF=DF=CD,
∵△ABC為等邊三角形,∴∠ABC=60°,
∴∠BEF=30°,
∵BE=AB+AE=1+2=3,
∴FB=EB=,
∴CF=FB-BC=,
則CD=2CF=1;
當(dāng)E在線段AB的延長(zhǎng)線上,D在線段CB的延長(zhǎng)線上時(shí),如圖2所示,
過(guò)E作EF⊥BD,垂足為F點(diǎn),可得∠EFC=90°,
∵EC=ED,∴F為CD的中點(diǎn),即CF=DF=CD,
∵△ABC為等邊三角形,∴∠ABC=∠EBF=60°,
∴∠BEF=30°,
∵BE=AE-AB=2-1=1,
∴FB=BE=,
∴CF=BC+FB=,
則CD=2CF=3,
綜上,CD的值為1或3.
圖1 圖2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1正方形ABCD中,E、F、G、H分別是AB、BC、CD、DA上的點(diǎn),3AE=EB,有一只螞蟻從E點(diǎn)出發(fā),經(jīng)過(guò)F、G、H,最后回點(diǎn)E點(diǎn),則螞蟻所走的最小路程是( )
A.2B.4C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D,E分別是AC,AB上的點(diǎn),BD與CE交于點(diǎn)O.給出下列三個(gè)條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個(gè)條件中,哪兩個(gè)條件可判定△ABC是等腰三角形(用序號(hào)寫出一種情形):_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張師傅駕車從甲地去乙地,途中在加油站加了一次油,加油時(shí),車載電腦顯示還能行駛50千米.假設(shè)加油前、后汽車都以100千米/小時(shí)的速度勻速行駛,已知油箱中剩余油量y(升)與行駛時(shí)間t(小時(shí))之間的關(guān)系如圖所示.
(1)求張師傅加油前油箱剩余油量y(升)與行駛時(shí)間t(小時(shí))之間的關(guān)系式;
(2)求出a的值;
(3)求張師傅途中加油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,在△ABC中,已知∠ABC、∠ACB的平分線相交于點(diǎn)O,過(guò)點(diǎn)O作EF∥BC交AB、AC于E、F.請(qǐng)寫出圖中的等腰三角形,并找出EF與BE、CF間的關(guān)系;
(2) 如圖②中∠ABC的平分線與三角形ABC的外角∠ACG的平分線CO交于O,過(guò)O點(diǎn)作OE∥BC交AB于E,交AC于F.圖中有等腰三角形嗎?如果有,請(qǐng)寫出來(lái).EF與BE、CF間的關(guān)系如何?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于三個(gè)數(shù)a,b,c,用M{a,b,c}表示這三個(gè)數(shù)的平均數(shù),用min{a,b,c}表示這三個(gè)數(shù)中最小的數(shù).例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平整的桌面上,有若干個(gè)棱長(zhǎng)為的小正方體堆成一個(gè)幾何體,如圖所示
(1)分別畫出這個(gè)幾何體從上面、左面看到的圖形;
(2)如果把露在外面的面都涂上顏色,求涂上顏色的面的面積;
(3)若你手里還有一些相同的小正方體,如果保持從上面、左面看到的圖形不變,最多可以再添加幾個(gè)小正方體?直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工程隊(duì)修建一條長(zhǎng)1200 m的道路,采用新的施工方式,工效提升了50%,結(jié)果提前4天完成任務(wù).
(1)求這個(gè)工程隊(duì)原計(jì)劃每天修道路多少米?
(2)在這項(xiàng)工程中,如果要求工程隊(duì)提前2天完成任務(wù),那么實(shí)際平均每天修建道路的工效比原計(jì)劃增加百分之幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+3交x軸于A(﹣1,0)和B(5,0),交y軸于點(diǎn)C,點(diǎn)D是線段OB上一動(dòng)點(diǎn),連接CD,將CD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DE,過(guò)點(diǎn)E作直線l⊥x軸,垂足為H,過(guò)點(diǎn)C作CF⊥l于F,連接DF,CE交于點(diǎn)G.
(1)求拋物線解析式;
(2)求線段DF的長(zhǎng);
(3)當(dāng)DG= 時(shí),
①求tan∠CGD的值;
②試探究在x軸上方的拋物線上,是否存在點(diǎn)P,使∠EDP=45°?若存在,請(qǐng)寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com