【題目】下列說法中,正確的是( 。

A.直線外一點(diǎn)到這條直線的垂線段,叫做點(diǎn)到直線的距離;

B.已知線段,軸,若點(diǎn)的坐標(biāo)為(-1,2),則點(diǎn)的坐標(biāo)為(-1,-2)或(-1,6);

C.互為相反數(shù),則;

D.已知關(guān)于的不等式的解集是,則的取值范圍為

【答案】B

【解析】

分別根據(jù)點(diǎn)到直線的距離,平面直角坐標(biāo)系中點(diǎn)的特點(diǎn),立方根的性質(zhì)及代數(shù)式的求值,一元一次不等式的解集可判斷.

解:A、點(diǎn)到直線的距離是直線外一點(diǎn)到這條直線的垂線段的長度,它是一個數(shù)量,而不是一個圖形,故A錯誤;

B、因?yàn)?/span>軸,所以上所有點(diǎn)的橫坐標(biāo)相同,又因?yàn)?/span>,點(diǎn)的坐標(biāo)為(-1,2),所以點(diǎn)的坐標(biāo)為(-1,-2)或(-1,6);故B正確;

C、若互為相反數(shù),則互為相反數(shù),

,

,

,故C錯誤;

D、∵關(guān)于的不等式的解集是,

,故,故D錯誤;

故答案為:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖將矩形ABCD置于平面直角坐標(biāo)系中,其中AD邊在x軸上, 直線MN: y=x8沿x軸的負(fù)方向以每秒2個單位的長度平移,設(shè)在平移過程中該直線被矩形ABCD的邊截得的線段長度為m,平移時間為t, mt的函數(shù)圖象如圖2所示.

(1)AB=6

①點(diǎn)A的坐標(biāo)為_____________,矩形ABCD的面積為____________.

②求a, b的值;

(2)AB=4,在平移過程中,求直線MN掃過矩形ABCD的面積 S t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AD=6,點(diǎn)E是邊CD上的動點(diǎn)(點(diǎn)E不與端點(diǎn)C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點(diǎn)F,H,G.當(dāng)=時,DE的長為( )

A. 2 B. C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=6與雙曲線y=(k≠0,且>0)交點(diǎn)A,點(diǎn)A的橫坐標(biāo)為2.

(1)求點(diǎn)A的坐標(biāo)及雙曲線的解析式;

(2)點(diǎn)B是雙曲線上的點(diǎn),且點(diǎn)B的縱坐標(biāo)是6,連接OB,AB.求三角形△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為6的正方形ABCD內(nèi)部有兩個大小相同的長方形AEFG、HMCNHMEF相交于點(diǎn)P,HNGF相交于點(diǎn)Q,AG=CM=xAE=CN=y

1)用含有x、y的代數(shù)式表示長方形AEFG與長方形HMCN重疊部分的面積S四邊形HPFQ,并求出x應(yīng)滿足的條件;

2)當(dāng)AG=AEEF=2PE時,

AG的長為_______

②四邊形AEFG旋轉(zhuǎn)后能與四邊形HMCN重合,請指出該圖形所在平面內(nèi)能夠作為旋轉(zhuǎn)中心的所有點(diǎn),并分別說明如何旋轉(zhuǎn)的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個長為8分米,寬為5分米,高為7分米的長方體上,截去一個長為6分米寬為5分米,深為2分米的長方體后,得到一個如圖所示的幾何體一只螞蟻要從該幾何體的頂點(diǎn)A處,沿著幾何體的表面到幾何體上和A相對的頂點(diǎn)B處吃食物,那么它需要爬行的最短路徑的長是 分米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O在直線AB上,OD是∠AOC的平分線,OE是∠BOC的平分線.

1)圖中與∠AOD互余的角是     ,與∠COE互補(bǔ)的角是     ;(把符合條件的角都寫出來)

2)求∠DOE的度數(shù);

3)如果∠BOF=51°34',∠COE=38°43',請畫出射線OF,求∠COF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:四邊形ABDC,CD=BD,EAB上一點(diǎn),連接DE,且∠CDE=B.若∠CAD=BAD=30°,AC=5,AB=3,EB=______________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在四邊形ABCD中,ABC=∠ADC=90,M、N分別是CDBC上的點(diǎn)

求作:點(diǎn)MN,使AMN的周長最小

作法:如圖,

(1)延長AD,在AD的延長線上截取DA=DA

(2)延長AB,在AB的延長線上截取B A″=BA;

(3)連接A′A″,分別交CD、BC于點(diǎn)M、N則點(diǎn)MN即為所求作的點(diǎn)

請回答:這種作法的依據(jù)是_____________

查看答案和解析>>

同步練習(xí)冊答案