【題目】如圖:四邊形ABDC中,CD=BD,E為AB上一點(diǎn),連接DE,且∠CDE=∠B.若∠CAD=∠BAD=30°,AC=5,AB=3,則EB=______________。
【答案】
【解析】
如圖,作DM⊥AC于M,DN⊥AB于N.首先證明Rt△DMC≌Rt△DNB,推出CM=BN,△ADM≌△ADN,推出AM=AB,再證明DE∥AC,推出∠ADE=∠CAD=∠DAB=30°,推出AE=DE,推出∠DEN=60°,在Rt△ADN中,可得DN=ANtan30°= ,在Rt△EDN中,可得DE=DN÷cos30°=,由此即可解決問題.
如圖,作DM⊥AC于M,DN⊥AB于N.
∵∠CAD=∠BAD=30°,DM⊥AC于M,DN⊥AB于N,
∴DN=DM,
在Rt△DMC和Rt△DNB中,
,
∴Rt△DMC≌Rt△DNB,
∴CM=BN,
同理可證△ADM≌△ADN,
∴AM=AB,
∴AC+AB=AM+CM+ANBN=2AM=8,
∴AM=AN=4,
∵∠DCM=∠DBN,
∴∠1=∠2,
∵∠CDE=∠2,
∴∠1=∠CDE,
∴DE∥AC,
∴∠ADE=∠CAD=∠DAB=30°,
∴AE=DE,
∴∠DEN=60°,
在Rt△ADN中,DN=ANtan30°=,
在Rt△EDN中,DE=DN÷cos30°=,
∴AE=,
∴EB=ABAE=3=.
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系xOy.△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)是(4,4),請(qǐng)解答下列問題:
(1)將△ABC向下平移5個(gè)單位長(zhǎng)度,畫出平移后的A1B1C1,并寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo);
(2)畫出△A1B1C1關(guān)于y軸對(duì)稱的△A2B2C2;
(3)將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A3B3C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( 。
A.直線外一點(diǎn)到這條直線的垂線段,叫做點(diǎn)到直線的距離;
B.已知線段,軸,若點(diǎn)的坐標(biāo)為(-1,2),則點(diǎn)的坐標(biāo)為(-1,-2)或(-1,6);
C.若與互為相反數(shù),則;
D.已知關(guān)于的不等式的解集是,則的取值范圍為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知RT△ABC中,∠C=90°,AC=4,BC=8.動(dòng)點(diǎn)P從點(diǎn)C出發(fā),以每秒2個(gè)單位的速度沿射線CB方向運(yùn)動(dòng),連接AP,設(shè)運(yùn)動(dòng)時(shí)間為ts.
(1)求斜邊AB的長(zhǎng)
(2)當(dāng)t為何值時(shí),△PAB的面積為6
(3)若t<4,請(qǐng)?jiān)谒o的圖中畫出△PAB中AP邊上的高BQ,問:當(dāng)t為何值時(shí),BQ長(zhǎng)為4?并求出此時(shí)點(diǎn)Q到邊BC的距離
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是△ABC的外心,I是△ABC的內(nèi)心,連AI并延長(zhǎng)交BC和⊙O于D、E兩點(diǎn).
(1)求證:EB=EI;
(2)若AB=4,AC=3,BE=2,求AI的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】AD與BE是△ABC的角平分線,D,E分別在BC,AC上,若AD=AB,BE=BC,則∠C=( 。
A. 69° B. C. D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸的單位長(zhǎng)度為1
(1)如果點(diǎn)表示的數(shù)互為相反數(shù),那么點(diǎn)表示的數(shù)是_______,點(diǎn)表示的數(shù)是_______;
(2)如果點(diǎn)表示的數(shù)互為相反數(shù),那么四點(diǎn)中,點(diǎn)_______表示的數(shù)的絕對(duì)值最大,請(qǐng)簡(jiǎn)要說明理由;
(3)當(dāng)點(diǎn)為原點(diǎn)時(shí),若存在一點(diǎn)到點(diǎn)的距離是點(diǎn)到點(diǎn)的距離的2倍,則點(diǎn)所表示的數(shù)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從家出發(fā)到公園晨練,在公園鍛煉一段時(shí)間后按原路返回,同時(shí)小明爸爸從公園按小明的路線返回家中.如圖是兩人離家的距離(米)與小明出發(fā)的時(shí)間(分)之間的關(guān)系,則小明出發(fā)______分鐘后與爸爸相遇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,F(xiàn)為CD上一點(diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com