【題目】如圖,C為線段AE上一動點(不與A、E重合),在AE同側分別作等邊△ABC和等邊△CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ,以下五個結論:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,恒成立的結論有
A. ①③⑤ B. ①③④⑤ C. ①②③⑤ D. ①②③④⑤
【答案】C
【解析】
①根據(jù)全等三角形的判定方法,證出△ACD≌△BCE,即可得出AD=BE.
③先證明△ACP≌△BCQ,即可判斷出CP=CQ,③正確;
②根據(jù)∠PCQ=60°,可得△PCQ為等邊三角形,證出∠PQC=∠DCE=60°,得出PQ∥AE,②正確.
④沒有條件證出BO=OE,得出④錯誤;
⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,⑤正確;即可得出結論.
∵△ABC和△CDE都是等邊三角形,
∴AC=BC,CD=CE,∠ACB=∠DCE=60,
∴∠ACB+∠BCD=∠DCE+∠BCD,
∴∠ACD=∠BCE,
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS),
∴AD=BE,結論①正確,
∵△ACD≌△BCE,
∴∠CAD=∠CBE,
又∵
∴
∴
在△ACP和△BCQ中,
∴△ACP≌△BCQ(AAS),
∴CP=CQ,結論③正確;
又∵
∴△PCQ為等邊三角形,
∴
∴PQ∥AE,結論②正確,
∵△ACD≌△BCE,
∴∠ADC=∠AEO,
∴
∴結論⑤正確.沒有條件證出BO=OE,④錯誤;
綜上,可得正確的結論有4個:①②③⑤.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】a、b、c在數(shù)軸上的位置如圖所示,則:
(1)用“<、>、=”填空:a____0,b____0,c_____0;
(2)用“<、>、=”填空:﹣a____0,a﹣b____0,c﹣a____0;
(3)化簡:|﹣a|﹣|a﹣b|+|c﹣a|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形OABC放置在第一象限內,頂點A在x軸上,若頂點B的坐標是(4,3),(1)請求出菱形邊長OA的長度.
(2)反比例函數(shù)經過點C,請求出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列給出四個命題:
①直角三角形的兩邊是方程y2-7y+12=0的兩根,則它的第三邊是5;
②若一元二次方程ax2+bx+c=0(a≠0)的系數(shù)a,c異號,則該方程有兩個不相等的實數(shù)根;
③若一元二次方程(m-2)x2+x+m2-4=0有一個根為0,那么m=±2;
④已知一元二次方程ax2+bx+c=0(a≠0)中a,b,c滿足a-b+c=0,4a+2b+c=0則方程的兩根為x1=-1,x2=2;其中真命題的是__________(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題呈現(xiàn):如圖1,點E、F、G、H分別在矩形ABCD的邊AB、BC、CD、DA上,AE=DG,求證:2S四邊形EFGH=S矩形ABCD.(S表示面積)
實驗探究:某數(shù)學實驗小組發(fā)現(xiàn):若圖1中AH≠BF,點G在CD上移動時,上述結論會發(fā)生變化,分別過點E、G作BC邊的平行線,再分別過點F、H作AB邊的平行線,四條平行線分別相交于點A1、B1、C1、D1,得到矩形A1B1C1D1.
如圖2,當AH>BF時,若將點G向點C靠近(DG>AE),經過探索,發(fā)現(xiàn):2S四邊形EFGH=S矩形ABCD+.
如圖3,當AH>BF時,若將點G向點D靠近(DG<AE),請?zhí)剿?/span>S四邊形EFGH、S矩形ABCD與之間的數(shù)量關系,并說明理由.
遷移應用:
請直接應用“實驗探究”中發(fā)現(xiàn)的結論解答下列問題:
如圖4,點E、F、G、H分別是面積為25的正方形ABCD各邊上的點,已知AH>BF,AE>DG,S四邊形EFGH=11,HF=,求EG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學開展“綠化家鄉(xiāng)、植樹造林”活動,為了解全校植樹情況,對該校甲、乙、丙、丁四個班級植樹的棵樹和所占百分比情況進行了調查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息,完成下列問題:
(1)這四個班共植樹 棵;
(2)請補全兩幅統(tǒng)計圖;
(3)若四個班級植樹的平均成活率是95%,全校共植樹2000棵,請你估計全校種植的樹中成活的樹大約有多少棵?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象相交于A,B兩點,且與坐標軸的交點為(﹣6,0),(0,6),點B的橫坐標為﹣4.點A的縱坐標為4.
(1)試確定反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)直接寫出不等式的解集.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com