【題目】如圖,拋物線交軸于點和點,交軸于點.
(1)求拋物線的函數(shù)表達式;
(2)若點在拋物線上,且,求點的坐標(biāo);
(3)如圖②,設(shè)點是線段上的一動點,作軸,交拋物線于點,是否存在面積的最大值?若存在,請求出點的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)點的坐標(biāo)為或或或;(3)
【解析】
(1)把點A、C的坐標(biāo)分別代入函數(shù)解析式,列出關(guān)于系數(shù)的方程組,通過解方程組求得系數(shù)的值;
(2)設(shè)P點縱坐標(biāo)為,根據(jù)列出關(guān)于m的方程,解方程求出m的值,進而得到點P的坐標(biāo);
(3)先運用待定系數(shù)法求出直線AC的解析式為y=-x-4,再設(shè)Q點坐標(biāo)為(t,-t-4),則D點坐標(biāo)為(t,t+3t-4),然后用含t的代數(shù)式表示QD,根據(jù)二次函數(shù)的性質(zhì)即可求出線段QD長度的最大值.
解:(1)∵拋物線交軸于點和點,交軸于點,
∴ ,解得 ,
∴;
(2)設(shè)點的縱坐標(biāo)為
∵
∴,
∴,
∴或
解得:或2或或
∴點的坐標(biāo)為或或或
(3)存在.
設(shè)AC解析式為,待入A,C點坐標(biāo),
,解得,
∴AC解析式為,
∵點在線段上
∴點的坐標(biāo)為
∵軸,交拋物線于點,
∴點的坐標(biāo)為
∴
∴當(dāng)時,的值最大.
又∵
∴的值最大時,的面積最大.
∴
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,矩形OABC的兩個頂點A,C分別在x軸,y軸上,點B的坐標(biāo)是(8,2),點P是邊BC上的一個動點,連接AP,以AP為一邊朝點B方向作正方形PADE,連接OP并延長與DE交于點M,設(shè).
(1)請用含a的代數(shù)式表示點P,E的坐標(biāo).
(2)如圖2,連接OE,并把OE繞點E逆時針方向旋轉(zhuǎn)90°得EF.若點F恰好落在x軸的正半軸上,求a與的值.
(3)如圖1,若點M為DE的中點,并且,點在OP的延長線上,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,BC是⊙O的直徑,OE⊥BC交AB于點E,若BE=2AE,則∠ADC =_________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,AB//DC,∠A=60°,AD=DC=BC=4,點E沿A→D→C→B運動,同時點F沿A→B→C運動,運動速度均為每秒1個單位,當(dāng)兩點相遇時,運動停止.則△AEF的面積y與運動時間x秒之間的圖象大致為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,△ABC中,AB=AC,BC=6,BE為中線,點D為BC邊上一點;BD=2CD,DF⊥BE于點F,EH⊥BC于點H.
(1)CH的長為_____;
(2)求BF·BE的值:
(3)如圖2,連接FC,求證:∠EFC=∠ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某校教學(xué)樓正前方有一棵大樹DE,高度是10米,從教學(xué)樓頂端A測得大樹頂端E的俯角α是45°,大樹低端D到教學(xué)樓前臺階底邊的水平距離CD是15米,臺階坡長BC是6米,臺階的坡度i=1:,求教學(xué)樓AB的高度約為多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程的根可視為函數(shù)的圖象與函數(shù)的圖象交點的橫坐標(biāo),則方程的實根所在的范圍是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于及一個矩形給出如下定義:如果上存在到此矩形四份頂點距離都相等的點,那么稱是該矩形的“等距圓”,如圖,平面直角坐標(biāo)系中,矩形的頂點坐標(biāo)為,頂點在軸上,,且的半徑為.
(1)在,,中可以成為矩形的“等距圓”的圓心的是__________.
(2)如果點在直線上,且是矩形的“等距圓”,那么點的坐標(biāo)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于A、C兩點,與直線y=x﹣1交于A、B兩點,直線AB與拋物線的對稱軸交于點E.
(1)求拋物線的解板式.
(2)點P在直線AB上方的拋物線上運動,若△ABP的面積最大,求此時點P的坐標(biāo).
(3)在平面直角坐標(biāo)系中,以點B、E、C、D為頂點的四邊形是平行四邊形,請直接寫出符合條件點D的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com