【題目】(11分)如圖1,點A(a,b)在平面直角坐標(biāo)系xOy中,點A到坐標(biāo)軸的垂線段AB,AC與坐標(biāo)軸圍成矩形OBAC,當(dāng)這個矩形的一組鄰邊長的和與積相等時,點A稱作“垂點”,矩形稱作“垂點矩形”.

(1)在點P(1,2),Q(2,-2),N(,-1)中,是“垂點”的點為 ;

(2)點M(-4,m)是第三象限的“垂點”,直接寫出m的值

(3)如果“垂點矩形”的面積是,且“垂點”位于第二象限,寫出滿足條件的“垂點”的坐標(biāo) ;

(4)如圖2,平面直角坐標(biāo)系的原點O是正方形DEFG的對角線的交點,當(dāng)正方形DEFG的邊上存在“垂點”時,GE的最小值為8.

【答案】(1)Q;(2);(3)(-4,),(-,4);(4)8

【解析】

1)根據(jù)垂點的意義直接判斷即可得出結(jié)論;

2)根據(jù)垂點的意義建立方程即可得出結(jié)論;

3)根據(jù)垂點的意義和矩形的面積建立方程即可得出結(jié)論

4)先確定出直線EF的解析式,利用垂點的意義建立方程利用非負(fù)性即可確定出m的范圍,即可得出結(jié)論.

1P1,2),1+2=3,1×2=2,

23∴點P不是垂點”,

Q2,﹣2),2+2=4,2×2=4,Q垂點”.

N,﹣1),+1=×1=

,∴點N不是垂點”,

故答案為:Q;

2∵點 M(﹣4m)是第三象限的垂點”,4+(﹣m)=4×(﹣m),m=﹣,

故答案為:;

3)設(shè)垂點的坐標(biāo)為(a,b),a+b=﹣ab

垂點矩形的面積為,ab=

:﹣a+b=﹣ab=

解得a=﹣4,b=a=﹣,b=4垂點的坐標(biāo)為(﹣4,)或(﹣4),

故答案為:(﹣4,)或(﹣,4),.

4)設(shè)點Em,0)(m0),

∵四邊形EFGH是正方形,F0,m),y=﹣x+m.設(shè)邊EF上的垂點的坐標(biāo)為(a,﹣a+m),a+(﹣a+m)=a(﹣a+m

a2am=﹣ma2=0,m24m=mm40,

m0,m40m4m的最小值為4,EG的最小值為2m=8

故答案為:8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠B、∠D的兩邊分別平行。

(1)在圖①中,∠B與∠D的數(shù)量關(guān)系為相等相等。

(2)在圖②中,∠B與∠D的數(shù)量關(guān)系為互補互補。

(3)用一句話歸納的結(jié)論為如果一個角的兩邊分別平行于另一個角的兩邊,那么這兩個角相等或互補如果一個角的兩邊分別平行于另一個角的兩邊,那么這兩個角相等或互補。

試分別說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為1的正方形,點E在AD邊上運動,且不與點A和點D重合,連結(jié)CE,過點C作CFCE交AB的延長線于點F,EF交BC于點G.

(1)求證:CDE≌△CBF;

(2)當(dāng)DE=時,求CG的長;

(3)連結(jié)AG,在點E運動過程中,四邊形CEAG能否為平行四邊形?若能,求出此時DE的長;若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,EAD邊的中點,點MAB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.

1)求證:四邊形AMDN是平行四邊形;

2)填空:當(dāng)AM的值為 時,四邊形AMDN是矩形;當(dāng)AM的值為 時,四邊形AMDN是菱形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價為每件20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):

(1)設(shè)李明每月獲得利潤為w(元),當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?

(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應(yīng)定為多少元?

(3)根據(jù)物價部門規(guī)定,這種護(hù)眼臺燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價×銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E.

(1)求證:CD為⊙O的切線;

(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,動點P按圖中箭頭所示方向從原點出發(fā),1次運動到P1(1,1),2次接著運動到點P2(2,0),第3次接著運動到點P3(3-2),,按這的運動規(guī)律,P2019的坐標(biāo)是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從①;②;③;④.這四個條件中選取兩個,使四邊形成為平行四邊形.下面不能說明是平行四邊形的是(

A.①②B.①③C.②④D.①④

查看答案和解析>>

同步練習(xí)冊答案