【題目】如圖,直線y=+4與x軸、y軸分別交于A、B兩點,把△AOB繞點A順時針旋轉(zhuǎn)90°后得到△AO′B′,則點B′的坐標是_________.
【答案】(7,3)
【解析】
首先根據(jù)直線AB求出點A和點B的坐標,結(jié)合旋轉(zhuǎn)的性質(zhì)可知點B′的橫坐標等于OA與OB的長度之和,而縱坐標等于OA的長,進而得出B′的坐標.
解:y=-x+4中,令x=0得,y=4;令y=0得,-x+4=0,解得x=3,
∴A(3,0),B(0,4).
由旋轉(zhuǎn)可得△AOB≌△AO′B′,∠O′AO=90°,
∴∠B′O′A=90°,OA=O′A,OB=O′B′,
∴O′B′∥x軸,
∴點B′的縱坐標為OA長,即為3;橫坐標為OA+O′B′=OA+OB=3+4=7.
故點B′的坐標是(7,3),
故答案為:(7,3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,.點從出發(fā)沿向運動,速度為每秒,點是點以為對稱中心的對稱點,點運動的同時,點從出發(fā)沿向運動,速度為每秒,當點到達頂點時,同時停止運動,設(shè)兩點運動時間為秒.
(1)當為何值時,?
(2)設(shè)四邊形的面積為,求關(guān)于的函數(shù)關(guān)系式;
(3)四邊形面積能否是面積的?若能,求出此時的值;若不能,請說明理由;
(4)當為何值時,為等腰三角形?(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,,,斜邊,將繞點順時針旋轉(zhuǎn),得到,連接.點從點出發(fā),沿方向勻速行動,速度為;同時,點從點出發(fā),沿方向勻速運動,速度為;當一個點停止運動,另一個點也停讓運動.連接,,交于點.設(shè)運動時間為,解答下列問題:
(1)當為何值時,平分?
(2)設(shè)四邊形的面積為,求與的函教關(guān)系式;
(3)在運動過程中,當時,求四邊形的面積;
(4)在運動過程中,是否存在某一時刻,使點為線段的中點?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,CD是AB邊上的中線,點E為線段CD上一點(不與點C、D重合),連接BE,作EF⊥BE與AC的延長線交于點F,與BC交于點G,連接BF.
(1)求證:△CFG∽△EBG;
(2)求∠EFB的度數(shù);
(3)求的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y1=﹣x2+bx+4.
(1)如圖,拋物線與x軸相交于兩點(1﹣m,0)、(1+m,0).
①求b的值;
②當n≤x≤n+1時,二次函數(shù)有最大值為3,求n的值.
(2)已知直線l:y2=2x﹣b+9,當x≥0時,y1≤y2恒成立,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海中兩個燈塔A,B,其中B位于A的正東方向上,漁船跟蹤魚群由西向東航行,在點C處測得燈塔A在西北方向上,燈塔B在北偏東30°方向上,漁船不改變航向繼續(xù)向東航行30海里到達點D,這時測得燈塔A在北偏西60°方向上,求燈塔A,B間的距離.(計算結(jié)果用根號表示,不取近似值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著移動計算技術(shù)和無線網(wǎng)絡(luò)的快速發(fā)展,移動學(xué)習(xí)方式越來越引起人們的關(guān)注,某校計劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機抽取了部分學(xué)生,對其家庭中擁有的移動設(shè)備的情況進行調(diào)查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中m的值為 ;
(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),估計該校1500名學(xué)生家庭中擁有3臺移動設(shè)備的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標系內(nèi),A,B為x軸上兩點,以AB為直徑的⊙M交y軸于C,D兩點,C為的中點,弦AE交y軸于點F,且點A的坐標為(2,0),CD=8
(1)求⊙M的半徑;
(2)動點P在⊙M的圓周上運動.
①如圖1,當FP的長度最大時,點P記為P,在圖1中畫出點P0,并求出點P0橫坐標a的值;
②如圖1,當EP平分∠AEB時,求EP的長度;
③如圖2,過點D作⊙M的切線交x軸于點Q,當點P與點A,B不重合時,請證明為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,⊙O經(jīng)過點A、C、D,與BC相交于點E,連接AC、AE.若∠D=70°,則∠EAC的度數(shù)為____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com