【題目】學(xué)校準(zhǔn)備購置甲乙兩種羽毛球拍若干,已知甲種球拍的單價(jià)比乙種球拍的單價(jià)多40元,且購買4副甲種球拍與購買6副乙種球拍的費(fèi)用相同.
(1)兩種球拍的單價(jià)各是多少元?
(2)若學(xué)校準(zhǔn)備購買100副甲乙兩種羽毛球拍,且購買甲種球拍的費(fèi)用不少于乙種球拍費(fèi)用的3倍,問購買多少副甲種球拍總費(fèi)用最低?
【答案】
(1)解:設(shè)甲種球拍的單價(jià)為x元,乙種球拍的單價(jià)為(x﹣40)元,
根據(jù)題意得,4x=6(x﹣40),
解得:x=120,
x﹣40=80,
答:甲種球拍的單價(jià)為120元,乙種球拍的單價(jià)80元
(2)解:設(shè)購買m副甲種球拍總費(fèi)用最低,總費(fèi)用為y元,
根據(jù)題意得,120m≥3×80(100﹣m),
解得:m≥ ,
∵y=120m+80(100﹣m)=40m+8000
∵40>0,
∴當(dāng)m取最小值時(shí),總費(fèi)用為y最小,
∴m=67時(shí),總費(fèi)用為y最小,
答:購買67副甲種球拍總費(fèi)用最低
【解析】(1)設(shè)甲種球拍的單價(jià)為x元,乙種球拍的單價(jià)為(x﹣40)元,根據(jù)題意列方程即可得到結(jié)論;(2)設(shè)購買m副甲種球拍總費(fèi)用最低,總費(fèi)用為y元,根據(jù)題意列不等式得到m≥ ,根據(jù)函數(shù)的性質(zhì)即可得到結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.
甲公司方案:每月的養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)是一次函數(shù)關(guān)系,如圖所示.
乙公司方案:綠化面積不超過1000平方米時(shí),每月收取費(fèi)用5500元;綠化面積超過1000平方米時(shí),每月在收取5500元的基礎(chǔ)上,超過部分每平方米收取4元.
(1)求如圖所示的y與x的函數(shù)解析式;(不要求寫取值范圍)
(2)如果某學(xué)校目前的綠化面積是1200平方米.試通過計(jì)算說明:選擇哪家公司的服務(wù),每月的綠化養(yǎng)護(hù)費(fèi)用較少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,A(1,0)、B(0,2),BA=BC,∠ABC=90°,則點(diǎn) C 的坐標(biāo)為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是拋物線y=ax2+bx+c(a≠0)圖象的一部分,已知拋物線的對稱軸為x=2,與x軸的一個(gè)交點(diǎn)是(﹣1,0).下列結(jié)論:
①ac<0;
②4a﹣2b+c>0;
③拋物線與x軸的另一個(gè)交點(diǎn)是(4,0);
④點(diǎn)(﹣3,y1),(6,y2)都在拋物線上,則有y1<y2 . 其中正確的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我省某工藝廠為全運(yùn)會(huì)設(shè)計(jì)了一款成本為每件20元的工藝品,投放市場試銷后發(fā)現(xiàn)每天的銷售量y(件)是售價(jià)x(元/件)的一次函數(shù)。當(dāng)售價(jià)為22元/件時(shí),每天銷售量為780件;當(dāng)售價(jià)為25元/件時(shí),每天銷售量為750件。
(1)求y與x的函數(shù)關(guān)系式;
(2)如果該工藝品售價(jià)最高不超過每件30元,那么售價(jià)定為每件多少元時(shí),工藝廠銷售該工藝品每天獲得的利潤最大?最大利潤是多少元?(利潤=售價(jià)-成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 ABC中,AD平分 BAC,按如下步驟作圖:
第一步,分別以點(diǎn)A、D為圓心,以大于 AD的長為半徑在AD兩側(cè)做弧,交于兩點(diǎn)M、N;
第二步,連接MN分別交AB、AC于點(diǎn)E、F;
第三步,連接DE、DF.
若BD=6,AF=4,CD=3,則BE的長是( ).
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(A2013防城港)如圖,在給定的一張平行四邊形紙片上作一個(gè)菱形.甲、乙兩人的作法如下: 甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.
根據(jù)兩人的作法可判斷( 。
A.甲正確,乙錯(cuò)誤
B.乙正確,甲錯(cuò)誤
C.甲、乙均正確
D.甲、乙均錯(cuò)誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校教學(xué)樓AB的后面有一建筑物CD,在距離CD的正后方30米的觀測點(diǎn)P處,以22°的仰角測得建筑物的頂端C恰好擋住教學(xué)樓的頂端A,而在建筑物CD上距離地面3米高的E處,測得教學(xué)樓的頂端A的仰角為45°,求教學(xué)樓AB的高度.
(參考數(shù)據(jù):sin22°≈ ,cos22°≈ ,tan22°≈ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是CD的中點(diǎn),AE是延長線交BC的延長線于F,分別連接AC,DF,解答下列問題:
(1)求證:△ADE≌△FCE;
(2)若DC平分∠ADF,試確定四邊形ACFD是什么特殊四邊形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com