【題目】如圖,在ABCD中,E是CD的中點(diǎn),AE是延長(zhǎng)線交BC的延長(zhǎng)線于F,分別連接AC,DF,解答下列問(wèn)題:
(1)求證:△ADE≌△FCE;
(2)若DC平分∠ADF,試確定四邊形ACFD是什么特殊四邊形?請(qǐng)說(shuō)明理由.

【答案】
(1)證明:∵四邊形ABCD是平行四邊形,

∴AD∥BC,

∴∠DAE=∠F,∠D=∠ECF,

又∵E是DC的中點(diǎn),

∴DE=CE,

在△ADE和△FCE中, ,

∴△ADE≌△FCE(AAS)


(2)解:若DC平分∠ADF,則四邊形ACFD是菱形;理由如下:

∵△ADE≌△FCE,

∴AD=CF,

又∵AD∥CF,

∴四邊形ACFD是平行四邊形,

∵DC平分∠ADF,

∴∠ADC=∠CDF,

∴∠FCD=∠CDF,

∴DF=CF,

∴四邊形ACFD是菱形


【解析】(1)由平行四邊形的性質(zhì)和中點(diǎn)的性質(zhì),易得∠DAE=∠F,∠D=∠ECF,AE=CE,繼而證得:△ADE≌△FCE.(2)由第(1)問(wèn)中△ADE≌△FCE,易得AD=CF,又由AD∥CF,即可證得四邊形ACFD是平行四邊形,再證出DF=CF,即可得出結(jié)論.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平行四邊形的性質(zhì)(平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校準(zhǔn)備購(gòu)置甲乙兩種羽毛球拍若干,已知甲種球拍的單價(jià)比乙種球拍的單價(jià)多40元,且購(gòu)買4副甲種球拍與購(gòu)買6副乙種球拍的費(fèi)用相同.
(1)兩種球拍的單價(jià)各是多少元?
(2)若學(xué)校準(zhǔn)備購(gòu)買100副甲乙兩種羽毛球拍,且購(gòu)買甲種球拍的費(fèi)用不少于乙種球拍費(fèi)用的3倍,問(wèn)購(gòu)買多少副甲種球拍總費(fèi)用最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,需在一面墻上繪制兩個(gè)形狀相同的拋物絨型圖案,按照?qǐng)D中的直角坐標(biāo)系,最高點(diǎn)M到橫軸的距離是4米,到縱軸的距離是6米;縱軸上的點(diǎn)A到橫軸的距離是1米,右側(cè)拋物線的最大高度是左側(cè)拋物線最大高度的一半.(結(jié)果保留整數(shù)或分?jǐn)?shù),參考數(shù)據(jù): = , =
(1)求左側(cè)拋物線的表達(dá)式;
(2)求右側(cè)拋物線的表達(dá)式;
(3)求這個(gè)圖案在水平方向上的最大跨度是多少米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABE中,∠A=105°,AE的垂直平分線MNBE于點(diǎn)C,且AB+BC=BE,則∠B的度數(shù)是( 。

A. 45° B. 60° C. 50° D. 55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明為班級(jí)聯(lián)歡會(huì)設(shè)計(jì)了一個(gè)摸球游戲.游戲規(guī)則如下:在一個(gè)不透明的紙箱里裝有紅、黃、藍(lán)三種顏色的小球,它們除顏色外完全相同,其中紅球有2個(gè),黃球有1個(gè),藍(lán)球有1個(gè).游戲者先從紙箱里隨機(jī)摸出一個(gè)球,記錄顏色后放回,將小球搖勻,再隨機(jī)摸出一個(gè)球,若兩次摸到的球顏色相同,則游戲者可獲得一份紀(jì)念品.請(qǐng)你利用樹狀圖或列表法求游戲者獲得紀(jì)念品的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為適應(yīng)日益激烈的市場(chǎng)競(jìng)爭(zhēng)要求,某工廠從2016年1月且開始限產(chǎn),并對(duì)生產(chǎn)線進(jìn)行為期5個(gè)月的升降改造,改造期間的月利潤(rùn)與時(shí)間成反比例;到5月底開始恢復(fù)全面生產(chǎn)后,工廠每月的利潤(rùn)都比前一個(gè)月增加10萬(wàn)元.設(shè)2016年1月為第1個(gè)月,第x個(gè)月的利潤(rùn)為y萬(wàn)元,其圖象如圖所示,試解決下列問(wèn)題:
(1)分別求該工廠對(duì)生產(chǎn)線進(jìn)行升級(jí)改造前后,y與x之間的函數(shù)關(guān)系式;
(2)到第幾個(gè)月時(shí),該工廠月利潤(rùn)才能再次達(dá)到100萬(wàn)元?
(3)當(dāng)月利潤(rùn)少于50萬(wàn)元時(shí),為該工廠的資金緊張期,問(wèn)該工廠資金緊張期共有幾個(gè)月?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】南山植物園中現(xiàn)有A、B兩個(gè)園區(qū),已知A園區(qū)為長(zhǎng)方形,長(zhǎng)為(x+y)米,寬為(x﹣y)米;B園區(qū)為正方形,邊長(zhǎng)為(x+3y)米.

(1)請(qǐng)用代數(shù)式表示A、B兩園區(qū)的面積之和并化簡(jiǎn);

(2)現(xiàn)根據(jù)實(shí)際需要對(duì)A園區(qū)進(jìn)行整改,長(zhǎng)增加(11x﹣y)米,寬減少(x﹣2y)米,整改后A區(qū)的長(zhǎng)比寬多350米,且整改后兩園區(qū)的周長(zhǎng)之和為980米.

①求x、y的值;

②若A園區(qū)全部種植C種花,B園區(qū)全部種植D種花,且C、D兩種花投入的費(fèi)用與吸引游客的收益如表:

求整改后A、B兩園區(qū)旅游的凈收益之和.(凈收益=收益﹣投入)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)B(a,5)在第二象限,點(diǎn)C在y軸上移動(dòng),以BC為斜邊作等腰直角△BCD,我們發(fā)現(xiàn)直角頂點(diǎn)D點(diǎn)隨著C點(diǎn)的移動(dòng)也在一條直線上移動(dòng),這條直線的函數(shù)表達(dá)式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC為等腰直角三角形,點(diǎn)D是邊BC上一動(dòng)點(diǎn),以AD為直角邊作等腰直角△ADE,分別過(guò)A、E點(diǎn)向BC邊作垂線,垂足分別為F、G.連接BE.

(1)證明:BG=FD;

(2)求∠ABE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案