.已知AB是⊙O的直徑,AP是⊙O的切線,A是切點(diǎn),BP與⊙O交于點(diǎn)C.
(1)如圖①,若AB=2,∠P=30°,求AP的長(zhǎng)(結(jié)果保留根號(hào));
(2)如圖②,若D為AP的中點(diǎn),求證:直線CD是⊙O的切線.
【考點(diǎn)】切線的判定與性質(zhì);勾股定理.
【專題】計(jì)算題;證明題.
【分析】(1)易證PA⊥AB,再通過解直角三角形求解;
(2)本題連接OC,證出OC⊥CD即可.首先連接AC,得出直角三角形ACP,根據(jù)直角三角形斜邊上中線等于斜邊一半得CD=AD,再利用等腰三角形性質(zhì)可證∠OCD=∠OAD=90°,從而解決問題.
【解答】解:(1)∵AB是⊙O的直徑,AP是切線,
∴∠BAP=90°.
在Rt△PAB中,AB=2,∠P=30°,
∴BP=2AB=2×2=4.
由勾股定理,得.
(2)如圖,連接OC、AC.
∵AB是⊙O的直徑,
∴∠BCA=90°,又∵∠ACP=180°﹣∠BCA=90°.
在Rt△APC中,D為AP的中點(diǎn),
∴.
∴∠4=∠3.
又∵OC=OA,
∴∠1=∠2.
∵∠2+∠4=∠PAB=90°,
∴∠1+∠3=∠2+∠4=90°.
即OC⊥CD.
∴直線CD是⊙O的切線.
【點(diǎn)評(píng)】此題考查了切線的判定和性質(zhì)及解直角三角形等知識(shí)點(diǎn),難度適中.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,函數(shù)y=2x和y=ax+4的圖象相交于點(diǎn)A(m,3),則不等式2x≥ax+4的解集為( )
| A. | x≥ | B. | x≤3 | C. | x≤ | D. | x≥3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com