【題目】函數(shù)y=mx2﹣2mx﹣3m是二次函數(shù).

(1)如果該二次函數(shù)的圖象與y軸的交點為(0,3),求m的值;

(2)在給定的坐標(biāo)系中畫出(1)中二次函數(shù)的圖象.

【答案】(1)m=﹣1;(2)畫圖見解析.

【解析】

(1)由拋物線與y軸交于(0,3),將x=0,y=3代入拋物線解析式,即可求出m的值;(2)由(1)求得解析式,配方后找出頂點坐標(biāo),根據(jù)確定出的解析式列出相應(yīng)的表格,由表格得出7個點的坐標(biāo),在平面直角坐標(biāo)系中描出7個點,然后用平滑的曲線作出拋物線的圖象.

(1)∵該函數(shù)的圖象與y軸交于點(0,3),

∴把x=0,y=3代入解析式得:﹣3m=3,

解得m=﹣1;

(2)由(1)可知函數(shù)的解析式為y=﹣x2+2x+3,

∵y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴頂點坐標(biāo)為(1,4);

列表如下:

x

﹣2

﹣1

0

1

2

3

4

y

﹣5

0

3

4

3

0

﹣5

描點;

畫圖如下:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,小明將一張長為4、寬為3的矩形紙片沿對角線剪開,得到兩張三角形紙片(如圖2),將這兩張三角紙片擺成如圖3的形狀,但點BC、FD在同一條直線上,且點C與點F重合(在圖3至圖6中統(tǒng)一用點F表示).

小明在對這兩張三角形紙片進行如下操作時遇到了三個問題,請你幫助解決.

1)將圖3中的ABF沿BD向右平移到圖4的位置,其中點B與點F 重合,請你求出平移的距離 ;

2在圖5中若∠GFD60°,則圖3中的ABF繞點 方向旋轉(zhuǎn) 到圖5的位置;

3)將圖3中的ABF沿直線AF翻折到圖6的位置,AB1DE于點H,試問:AEHHB1D的面積大小關(guān)系.說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

(1)求yx之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤為W(元),求Wx之間的函數(shù)表達(dá)式(利潤=收入-成本);

(3)試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少元時獲得最大利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O的直徑AB=10,弦BC=6,點D在O上(與點C在AB兩側(cè)),過D作⊙O的切線PD.

(1)如圖,PD與AB的延長線交于點P,連接PC,若PC與O相切,求弦AD的長;

(2)如圖,若PD∥AB,

求證:CD平分∠ACB;

求弦AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是反比例函數(shù)y=圖象上一點,PM∥x軸交y軸于點M,MP=2,點Q的坐標(biāo)為(4,0),連接PO、PQ,△OPM的面積為3,求該反比例函數(shù)的表達(dá)式是△OPQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小哲的姑媽經(jīng)營一家花店,隨著越來越多的人喜愛“多肉植物”,姑媽也打算銷售“多肉植物”.小哲幫助姑媽針對某種“多肉植物”做了市場調(diào)查后,繪制了以下兩張圖表:

(1)如果在三月份出售這種植物,單株獲利多少元;

(2)請你運用所學(xué)知識,幫助姑媽求出在哪個月銷售這種多肉植物,單株獲利最大?(提示:單株獲利=單株售價﹣單株成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx與雙曲線y (k0)交于A、B兩點,且點A的橫坐標(biāo)為4.

(1)k的值;

(2)若雙曲線y (k0)上一點C的縱坐標(biāo)為8,求AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某同學(xué)想測量旗桿的高度,他在某一時刻測得1米長的竹竿豎直放置時影長為1.5,在同一時刻測量旗桿的影長時,因旗桿靠近一樓房,影子不全落在地面上,有一部分落在墻上,他測得落在地面上的影長為21,落在墻上的影高為6,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是⊙O的切線,B為切點,連接DO與⊙O交于點C,AB為⊙O的直徑,連接CA,若∠D=30°,O的半徑為4.

(1) 求∠BAC的大。

(2) 求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案