【題目】如圖,某消防隊在一居民樓前進行演習(xí),消防員利用云梯成功救出點B處的求救者后,又發(fā)現(xiàn)點B正上方點C處還有一名求救者.在消防車上點A處測得點B和點C的仰角分別是45°65°,點A距地面2.5米,點B距地面10.5.為救出點C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)

【答案】云梯需要繼續(xù)上升的高度約為9.

【解析】

過點于點,于點,在中,求得AD的長;在中,求得CD的長,根據(jù)BC=CD-BD即可求得BC的長.

過點于點,于點,

,

,

∴四邊形為矩形.

.

(米),

由題意可知,,

,

中,,

(米).

中,

(米).

(米).

答:云梯需要繼續(xù)上升的高度約為9.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將直角三角形的直角頂點放在點P4,4)處,兩直角邊分別與坐標(biāo)軸交于點A和點B,則OA+OB的值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,是射線上的動點(點與點不重合),是線段的中點,連結(jié),交線段于點,如果以,為頂點的三角形與相似,則線段的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AC=BC=3cm.動點P從點A出發(fā),以cm/s的速度沿AB方向運動到點B.動點Q同時從點A出發(fā),以1cm/s的速度沿折線ACCB方向運動到點B.設(shè)APQ的面積為y(cm2).運動時間為x(s),則下列圖象能反映yx之間關(guān)系的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D、E分別是等邊三角形ABC的邊AB、AC上的點,且AE=CD,CEBD交于點P.

(1)求證:CE=BD.

(2)求∠BPE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知五邊形ABCDE中,∠ABC=AED=90°AB=CD=AE=BC+DE=2,則五邊形ABCDE的面積為_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用直尺和圓規(guī)作一個角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=AOB的依據(jù)是( )

A.SASB.ASAC.AASD.SSS

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】感知:如圖①ABC,C=90°,AC=BC,D是邊BC上一點(D不與點B,C重合).連接AD,AD繞著點D逆時針旋轉(zhuǎn)90°,得到DE,連接BE,過點DDFACAB于點F,可知ADF≌△EDB,則∠ABE的大小為________.

探究:如圖②ABC,C=α(0°<α<90°),AC=BC,D是邊BC上一點(D不與點B,C重合),連接AD,AD繞著點D逆時針旋轉(zhuǎn)α,得到DE,連接BE,求證:∠ABE=α.

應(yīng)用:設(shè)圖②中的α=60°,AC=2.當(dāng)ABE是直角三角形時,AE=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A表示小明家,點B表示學(xué)校小明媽媽騎車帶著小明去學(xué)校,到達(dá)C處時發(fā)現(xiàn)數(shù)學(xué)書沒帶,于是媽媽立即騎車原路回家拿書后再追趕小明,同時小明步行去學(xué)校到達(dá)學(xué)校后等待媽媽假設(shè)拿書時間忽略不計,小明和媽媽在整個運動過程中分別保持勻速媽媽從C處出發(fā)x分鐘時離C處的距離為y1小明離C處的距離為y2,如圖②,折線O-D-E-F表示y1x的函數(shù)圖像;折線O-G-F表示y2x的函數(shù)圖像

(1)小明的速度為_________m/min,a的值為__________

(2)設(shè)媽媽從C處出發(fā)x分鐘時媽媽與小明之間的距離為y

寫出小明媽媽在騎車由C處返回到A處的過程中,yx的函數(shù)表達(dá)式及x的取值范圍;

在圖③中畫出整個過程中yx的函數(shù)圖像.(要求標(biāo)出關(guān)鍵點的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案