【題目】如圖,已知,,是射線上的動點(diǎn)(點(diǎn)與點(diǎn)不重合),是線段的中點(diǎn),連結(jié),交線段于點(diǎn),如果以,,為頂點(diǎn)的三角形與相似,則線段的長為________

【答案】

【解析】

如果△ADN和△BME相似,一定不相等的角是∠ADN和∠MBE,因?yàn)?/span>AD∥BC,如果兩角相等,那么MD重合,顯然不合題意.因此本題分①當(dāng)∠ADN=∠BME時(shí)和②當(dāng)∠AND=∠BEM時(shí),兩種情況解答即可

因?yàn)槿绻?/span>ADN和△BME相似,一定不相等的角是∠ADN和∠MBE,因?yàn)?/span>AD∥BC,如果兩角相等,那么MD重合,顯然不合題意,故應(yīng)分兩種情況進(jìn)行討論.

1,當(dāng)∠ADN=∠BEM時(shí),那么∠ADB=∠BEM,∴tan∠ADB=tan∠BEM.

DF⊥BE,垂足為F,可得四邊形ABFD為矩形,則AB=DF,設(shè)BE=x,

∵tan∠ADB= AB:AD,tan∠BEM =DF:FE,

∴AB:AD=DF:FE=AB:(BE-AD).

2:4=2:(x-4).

解得x=8.

BE=8.

②如圖2,當(dāng)∠ADB=∠BME,

而∠ADB=∠DBE,

∴∠DBE=∠BME,

∵∠E是公共角,

∴△BED∽△MEB,

,BE2=DEEM,

∵M(jìn)是線段DE的中點(diǎn),

∴EM=DE,

設(shè)BE=x,結(jié)合圖1,根據(jù)勾股定理可得:

= [22+(x-4)2],

∴x1=2,x2=-10(舍去),

∴BE=2.

綜上,線段BE的長為82,

故答案為82.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在不透明的袋子中有黑棋子10枚和白棋子若干(它們除顏色外都相同),現(xiàn)隨機(jī)從中摸出10枚記下顏色后放回,這樣連續(xù)做了10次,記錄了如下的數(shù)據(jù):

次數(shù)

1

2

3

4

5

6

7

8

9

10

黑棋數(shù)

1

3

0

2

3

4

2

1

1

3

根據(jù)以上數(shù)據(jù),估算袋中的白棋子數(shù)量為( )

A. 60 B. 50 C. 40 D. 30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下列材料,然后回答問題:

在關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)中,若各項(xiàng)的系數(shù)之和為零,即a+b+c=0,則有一根為1,另一根為.

證明:設(shè)方程的兩根為x1,x2,由a+b+c=0,知b=-(a+c),

∵x=

∴x1=1,x2.

(1)若一元二次方程ax2+bx+c=0(a≠0)的各項(xiàng)系數(shù)滿足a-b+c=0,請直接寫出此方程的兩根;

(2)已知方程(ac-bc)x2+(bc-ab)x+(ab-ac)=0有兩個相等的實(shí)數(shù)根,運(yùn)用上述結(jié)論證明:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AP=DP,DE=DF,DEAB于E,DFAC于F,則下列結(jié)論:.AD平分BAC;.BED≌△FPD;.DPAB;.DF是PC的垂直平分線.其中正確的是= _________ .(寫序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的邊上異于一點(diǎn),過點(diǎn)作直線截得的三角形與相似,那么這樣的直線可以作的條數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,先描出點(diǎn),點(diǎn).

1)描出點(diǎn)關(guān)于軸的對稱點(diǎn)的位置,寫出的坐標(biāo) ;

2)用尺規(guī)在軸上找一點(diǎn),使的值最。ūA糇鲌D痕跡);

3)用尺規(guī)在軸上找一點(diǎn),使(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】課題學(xué)習(xí):設(shè)計(jì)概率模擬實(shí)驗(yàn).

在學(xué)習(xí)概率時(shí),老師說:擲一枚質(zhì)地均勻的硬幣,大量重復(fù)實(shí)驗(yàn)后,正面朝上的概率約是.”小海、小東、小英分別設(shè)計(jì)了下列三個模擬實(shí)驗(yàn):

小海找來一個啤酒瓶蓋(如圖1)進(jìn)行大量重復(fù)拋擲,然后計(jì)算瓶蓋口朝上的次數(shù)與總次數(shù)的比值;

小東用硬紙片做了一個圓形轉(zhuǎn)盤,轉(zhuǎn)盤上分成8個大小一樣的扇形區(qū)域,并依次標(biāo)上18個數(shù)字(如圖2),轉(zhuǎn)動轉(zhuǎn)盤10次,然后計(jì)算指針落在奇數(shù)區(qū)域的次數(shù)與總次數(shù)的比值;

小英在一個不透明的盒子里放了四枚除顏色外都相同的圍棋子(如圖3),其中有三枚是白子,一枚是黑子,從中隨機(jī)同時(shí)摸出兩枚棋子,并大量重復(fù)上述實(shí)驗(yàn),然后計(jì)算摸出的兩枚棋子顏色不同的次數(shù)與總次數(shù)的比值.

根據(jù)以上材料回答問題:

小海、小東、小英三人中,哪一位同學(xué)的實(shí)驗(yàn)設(shè)計(jì)比較合理,并簡要說出其他兩位同學(xué)實(shí)驗(yàn)的不足之處.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某消防隊(duì)在一居民樓前進(jìn)行演習(xí),消防員利用云梯成功救出點(diǎn)B處的求救者后,又發(fā)現(xiàn)點(diǎn)B正上方點(diǎn)C處還有一名求救者.在消防車上點(diǎn)A處測得點(diǎn)B和點(diǎn)C的仰角分別是45°65°,點(diǎn)A距地面2.5米,點(diǎn)B距地面10.5.為救出點(diǎn)C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個圖案中,是軸對稱圖形的是(

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案