【題目】如圖,碼頭A、B分別在海島O的北偏東45°和北偏東60°方向上,倉庫C在海島O的北偏東75°方向上,碼頭A、B均在倉庫C的正西方向,碼頭B和倉庫C的距離BC=50km,若將一批物資從倉庫C用汽車運送到A、B兩個碼頭中的一處,再用貨船運送到海島O,若汽車的行駛速度為50km/h,貨船航行的速度為25km/h,問這批物資在哪個碼頭裝船,最早運抵海島O?(兩個碼頭物資裝船所用的時間相同,參考數(shù)據(jù): ≈1.4, ≈1.7)
【答案】這批物資在B碼頭裝船,最早運抵海島O.
【解析】試題分析:如圖延長CA交OM于K.承辦方求出OB、AB的長,分別求出時間即可判斷.
試題解析:解:如圖延長CA交OM于K.
由題意∠COK=75°,∠BOK=60°,∠AOK=45°,∠CKO=90°,∴∠KCO=15°,∠KBO=30°,OK=KA,∵∠KBO=∠C+∠BOC,∴∠C=∠BOC=15°,∴OB=BC=50(km),在Rt△OBK中,OK=OB=25(km),KB=OK=(km),在Rt△AOK中,OK=AK=25(km),OA=≈35km,∴AB=KB﹣AK≈17.5(km),∴從A碼頭的時間==3.4(小時),從B碼頭的時間= =3(小時),3<3.4.
答:這批物資在B碼頭裝船,最早運抵海島O.
科目:
來源: 題型:【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長方形OABC.
(1)求點A、C的坐標;
(2)將△ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖②);
(3)在坐標平面內(nèi),是否存在點P(除點B外),使得△APC與△ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用繩子量井深:把繩子三折來量,井外余4尺;把繩子四折來量,井外余1尺,則井深和繩長分別是 ( )
A、8尺,36尺B、3尺,13尺C、10尺,34尺D、11尺,37尺
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的角平分線CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列結(jié)論:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正確的結(jié)論是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點P的坐標為(a+1,2a-7),且點P到兩坐標軸的距離相等,則點P的坐標是( 。
A.(3,3)B.(3,-3)C.(9,9)D.(3,-3)或(9,9)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在Rt△ABC中,∠ACB=90°,AE平分∠BAC交BC于點E,D為AC上的點,BE=DE.
(1)求證:∠B+∠EDA=180°;
(2)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=BC,以BC為直徑的⊙O與AC相交于點D,過點D作DE⊥AB交CB延長線于點E,垂足為點F.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)若⊙O的半徑R=5,tanC=,求EF的長.
查看答案和解析>>