【題目】如圖,AB、CD為兩個(gè)建筑物,建筑物AB的高度為60米,從建筑物AB的頂點(diǎn)A點(diǎn)測(cè)得建筑物CD的頂點(diǎn)C點(diǎn)的俯角∠EAC為30°,測(cè)得建筑物CD的底部D點(diǎn)的俯角∠EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長(zhǎng)度;

(2)求建筑物CD的高度(結(jié)果保留根號(hào)).

【答案】160;(2

【解析】試題分析

(1)由已知可判斷ABD是等腰直角三角形;

(2)過(guò)點(diǎn)ADC延長(zhǎng)線的垂線,垂足為點(diǎn)F,則在RtAFC,求出FC的長(zhǎng),再求CD的長(zhǎng).

試題解析:

1)根據(jù)題意得:BDAE,

∴∠ADB=EAD=45°,

∵∠ABD=90°,

∴∠BAD=ADB=45°

BD=AB=60,

∴兩建筑物底部之間水平距離BD的長(zhǎng)度為60米;

2)延長(zhǎng)AE、DC交于點(diǎn)F

根據(jù)題意得四邊形ABDF為正方形,

AF=BD=DF=60,

RtAFC中,∠FAC=30°,

CF=AFtanFAC=60×=20,

又∵FD=60

CD=60﹣20,

∴建筑物CD的高度為(60﹣20)米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與實(shí)踐

問(wèn)題情境

如圖,同學(xué)們用矩形紙片ABCD開(kāi)展數(shù)學(xué)探究活動(dòng),其中AD=8,CD=6。

操作計(jì)算

(1)如圖(1),分別沿BE,DF剪去RtΔABE和RtΔCDF兩張紙片,如果剩余的紙片BEDF菱形,求AE的長(zhǎng);

圖(1) 圖(2) 圖(3)

操作探究

把矩形紙片ABCD沿對(duì)角線AC剪開(kāi),得到ΔABC和兩張紙片

(2)將兩張紙片如圖(2)擺放,點(diǎn)C和重合,點(diǎn)B,C,D在同一條直線上,連接,記的中點(diǎn)為M,連接BM,MD,發(fā)現(xiàn)ΔBMD是等腰三角形,請(qǐng)證明:

(3)如圖(3),將兩張紙片疊合在一起,然后將紙片繞點(diǎn)B順時(shí)針旋轉(zhuǎn)a(00<a<900),連接,探究并直接寫出線段的關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:在同一平面內(nèi)畫兩條相交、有公共原點(diǎn)的數(shù)軸x軸和y軸,交角a90°,這樣就在平面上建立了一個(gè)斜角坐標(biāo)系,其中w叫做坐標(biāo)角,對(duì)于坐標(biāo)平面內(nèi)任意一點(diǎn)P,過(guò)Py軸和x軸的平行線,與x軸、y軸相交的點(diǎn)的坐標(biāo)分別是ab,則稱點(diǎn)P的斜角坐標(biāo)為(a,b).如圖,w=60°,點(diǎn)P的斜角坐標(biāo)是(12),過(guò)點(diǎn)Px軸和y軸的垂線,垂足分別為M、N,則四邊形OMPN的面積是( )

A.B.C.D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們規(guī)定平面內(nèi)點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最小值稱為該點(diǎn)到這個(gè)圖形的最小距離d,點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最大值稱為該點(diǎn)到這個(gè)圖形的最大距離D,定義點(diǎn)A到圖形G的距離跨度為R=D-d

1如圖1,在平面直角坐標(biāo)系xOy,圖形G1為以O為圓心2為半徑的圓,直接寫出以下各點(diǎn)到圖形G1的距離跨度

A1,0的距離跨度______________;

B-, 的距離跨度____________;

C-3,-2的距離跨度____________;

根據(jù)中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點(diǎn)組成的圖形的形狀是______________

2如圖2,在平面直角坐標(biāo)系xOy,圖形G2為以D-1,0為圓心,2為半徑的圓,直線y=kx-1上存在到G2的距離跨度為2的點(diǎn),k的取值范圍

3如圖3,在平面直角坐標(biāo)系xOy,射線OPy=xx≥0),E是以3為半徑的圓,且圓心Ex軸上運(yùn)動(dòng),若射線OP上存在點(diǎn)到E的距離跨度為2,求出圓心E的橫坐標(biāo)xE的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖△ABC中,點(diǎn)D是邊AB的中點(diǎn),CEAB,且AB=2CE,連結(jié)BECD。

1)求證:四邊形BECD是平行四邊形;

2)用無(wú)刻度的直尺畫出△ABCBC上的中線AG(保留畫圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖所示,OD平分BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°

1)求出∠AOB及其補(bǔ)角的度數(shù);

2)求出∠DOC和∠AOE的度數(shù),并判斷∠DOE 與∠AOB是否互補(bǔ),并說(shuō)明理由;

3)若∠BOC=α,∠AOC=β,則∠DOE 與∠AOB是否互補(bǔ),并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一只甲蟲(chóng)在 5×5 的方格(每小格邊長(zhǎng)為 1)上沿著網(wǎng)格線運(yùn)動(dòng).它從 A處出發(fā)去看望 BC、D 處的其它甲蟲(chóng),規(guī)定:向上向右走為正,向下向左走為負(fù).如果從 A B 記為:AB+1+4),從 B A 記為:BA(﹣1,﹣4),其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向,那么圖中

1AC , ),BC , ),CD , );

2)若這只甲蟲(chóng)的行走路線為 ABCD,請(qǐng)計(jì)算該甲蟲(chóng)走過(guò)的最少路程;

3)若這只甲蟲(chóng)從 A 處去甲蟲(chóng) P 處的行走路線依次為(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),請(qǐng)?jiān)趫D中標(biāo)出 P 的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=10,點(diǎn)CD在線段AB上且AC=DB=2;P是線段CD上的動(dòng)點(diǎn),分別以AP,PB為邊在線段AB的同側(cè)作等邊AEP和等邊PFB,連接EF,設(shè)EF的中點(diǎn)為G;當(dāng)點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)D時(shí),則點(diǎn)G移動(dòng)路徑的長(zhǎng)是( ).

A.6B.5C.4D.3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,ABC是等邊三角形,四邊形BDEF是菱形其中E=60°,將菱形BDEF繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)甲、乙兩位同學(xué)發(fā)現(xiàn)在此旋轉(zhuǎn)過(guò)程中,有如下結(jié)論

線段AF與線段CD的長(zhǎng)度總相等

直線AF和直線CD所夾的銳角的度數(shù)不變;

那么你認(rèn)為( 。

A. 甲、乙都對(duì) B. 乙對(duì)甲不對(duì)

C. 甲對(duì)乙不對(duì) D. 甲、乙都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案