計算題
(1)23-37+3-52;
(2)(
2
3
-
1
2
)×30÷(-
1
5
)
;
(3)23-
1
14
×[2-(-3)2] 
;
(4)-22÷(-4)3+|0.8-1|×(2
1
2
)2
考點:有理數(shù)的混合運算
專題:計算題
分析:(1)原式結(jié)合后,利用加法法則計算即可得到結(jié)果;
(2)原式從左到右依次計算即可得到結(jié)果;
(3)原式先計算乘方運算,再計算乘法運算,最后算加減運算即可得到結(jié)果;
(4)原式先計算乘方運算,再計算乘除運算,最后算加減運算即可得到結(jié)果.
解答:解:(1)原式=-(37+52)+(23+3)=-89+26=-63;
(2)原式=(20-15)×(-5)=5×(-5)=-25;
(3)原式=8-
1
14
×(2-9)=8+
1
2
=8
1
2

(4)原式=-4÷(-64)+0.2×
25
4
=
1
16
+
5
4
=
21
16
點評:此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

有下列語句:
①兩條直線被第二條直線所截,同位角相等;
②若∠1+∠2+∠3=180°,則∠1、∠2及∠3三個角互為補角;
③自變量與因變量都是變量;
④相等的角是對頂角;
⑤同角或等角的補角相等.
其中正確的個數(shù)是( 。
A、2個B、3個C、4個D、5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求代數(shù)式的值.(
1
m+n
-
1
m-n
)÷
2n
m2+2mn+n2
,其中m=2a+1,n=a-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在空格內(nèi)填上適當角,完成推理過程.如圖.
(1)∵∠1=
 
,
∴DE∥AC;
(2)∵∠1=
 

∴EF∥BC;
(3)∵∠FED+
 
=180°,
∴AC∥ED.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

作圖題:
(1)把△ABC向右平移5個方格;
(2)繞點B的對應(yīng)點順時針方向旋轉(zhuǎn)90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

操作題
(1)如圖,在每個小正方形邊長為1的方格紙中,△ABC的頂點都在方格紙格點上.將△ABC向左平移2格,再向上平移4格.請在圖中畫出平移后的△A′B′C′;
(2)如圖,在長方形紙片內(nèi)畫有兩條直線m、n,現(xiàn)無法直接度量到這兩條直線所成的銳角的度數(shù),請你設(shè)計兩種方法,通過構(gòu)造圖形,度量其它角,間接求這個銳角的度數(shù).(要求:構(gòu)造圖形時,所有線條必須在表示紙片的方框內(nèi),并簡要說明所畫的線條和所需要度量的角.超過兩種方法,每多一種加0.5分,最多加2分,加分計入總分).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,BD是△ABC的角平分線,ED∥BC,交AB于點E.
(1)若∠A=44°,∠BDC=60°,求∠BED的度數(shù);
(2)若∠A-∠ABD=31°,∠EDC=76°,求∠ADB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程(或不等式)組
(1)
2(x-y)
3
=
x+y
6
-1
3(x+y)=2(x-y)+8
;         
(2)-5<
3(1-2x)
5
<6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

因式分解:
(1)3a(x+y)-2(y+x);
(2)(4x-3y)2-25y2
(3)x2-2xy+y2-z2

查看答案和解析>>

同步練習(xí)冊答案