閱讀下面的材料:
小明遇到一個問題:如圖(1),在?ABCD中,點E是邊BC的中點,點F是線段AE上一點,BF的延長線交射線CD于點G.如果
AF
EF
=3,求
CD
CG
的值.
他的做法是:過點E作EH∥AB交BG于點H,則可以得到△BAF∽△HEF.請你回答:
(1)AB和EH的數(shù)量關(guān)系為
 
,CG和EH的數(shù)量關(guān)系為
 
,
CD
CG
的值為
 

(2)如圖(2),在原題的其他條件不變的情況下,如果
AF
EF
=a(a>0),那么
CD
CG
的值為
 
(用含a的代數(shù)式表示).
(3)請你參考小明的方法繼續(xù)探究:如圖(3),在四邊形ABCD中,DC∥AB,點E是BC延長線上一點,AE和BD相交于點F.如果
AB
CD
=m,
BC
BE
=n(m>0,n>0),那么
AF
EF
的值為
 
(用含m,n的代數(shù)式表示).
考點:相似形綜合題
專題:
分析:(1)本問體現(xiàn)“特殊”的情形,
AE
EF
=3是一個確定的數(shù)值.如答圖1,過E點作平行線,構(gòu)造相似三角形,利用相似三角形和中位線的性質(zhì),分別將各相關(guān)線段均統(tǒng)一用EH來表示,最后求得比值;
(2)本問體現(xiàn)“一般”的情形,
AE
EF
=a不再是一個確定的數(shù)值,但(1)問中的解題方法依然適用,如答圖2所示.
(3)本問體現(xiàn)“類比”與“轉(zhuǎn)化”的情形,將(1)(2)問中的解題方法推廣轉(zhuǎn)化到梯形中,如答圖3所示.
解答:解:(1)依題意,過點E作EH∥AB交BG于點H,如右圖1所示.
則有△ABF∽△EHF,
AB
EH
=
AF
EF
=3,∴AB=3EH.
∵?ABCD,EH∥AB,∴EH∥CD,
又∵E為BC中點,∴EH為△BCG的中位線,∴CG=2EH.
CD
CG
=
AB
CG
=
3EH
2EH
=
3
2

故答案為:AB=3EH;CG=2EH;
3
2


(2)如右圖2所示,作EH∥AB交BG于點H,則△EFH∽△AFB.
AB
EH
=
AF
EF
=a,∴AB=aEH.
∵AB=CD,∴CD=aEH.
∵EH∥AB∥CD,∴△BEH∽△BCG.
CG
EH
=
BC
BE
=2,∴CG=2EH.
CD
CG
=
aEH
2EH
=
a
2

故答案為:
a
2


(3)如右圖3所示,過點E作EH∥AB交BD的延長線于點H,則有EH∥AB∥CD.
∵EH∥CD,∴△BCD∽△BEH,
CD
EH
=
BC
BE
=n,∴CD=nEH.
AB
CD
=m,∴AB=mCD=mnEH.
∵EH∥AB,∴△ABF∽△EHF,
AF
EF
=
AB
EH
=
mnEH
EH
=mn,
故答案為:mn.
點評:本題考查了相似三角形的判定與性質(zhì),由平行四邊形中的一個特殊的例子出發(fā)(第1問),推廣到平行四邊形中的一般情形(第2問),最后再通過類比、轉(zhuǎn)化到梯形中去(第3問).體現(xiàn)了初中數(shù)學(xué)的類比、轉(zhuǎn)化、從特殊到一般等思想方法,有利于學(xué)生觸類旁通、舉一反三.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在?ABCD中,E,F(xiàn)分別為BC,AB中點,連接FC,AE,且AE與FC交于點G,AE的延長線與DC的延長線交于點N.
(1)求證:△ABE≌△NCE;
(2)若AB=3n,F(xiàn)B=
3
2
GE,試用含n的式子表示線段AN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點E是正方形內(nèi)一點,△EDC是等邊三角形
(1)求證:△ADE≌△BCE;
(2)求∠AEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解方程或方程組
(1)
3x-5y=9
-2x+3y=-6
;         
(2)
1-x
x-2
+2=
1
2-x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

雅安地震,牽動著全國人民的心,地震后某中學(xué)舉行了愛心捐款活動,如圖是該校九年級某班學(xué)生為雅安災(zāi)區(qū)捐款情況繪制的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖.

(1)求該班人數(shù);
(2)補全條形統(tǒng)計圖;
(3)在扇形統(tǒng)計圖中,捐款“15元人數(shù)”所在扇形的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AD是BC邊上的高,BE平分∠BC交AD于點E,∠C=60°,∠BED=70°,求∠ABC和∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在平面直角坐標系中,△ABC的位置如圖.
(1)請在圖中畫出△ABC關(guān)于y軸對稱的△A′B′C″;
(2)若以A′C″為邊作一個等腰三角形△A′C″D,使點D落在第一象限的格點上,請你標出點D的位置,并寫出點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標系中,四邊形ABCD是平行四邊形,AD=6,若OA、OB的長是關(guān)于x的一元二次方程x2-7x+12=0的兩個根,且OA>OB.
(1)求OA、OB的長.
(2)若點E為x軸正半軸上的點,且S△AOE=
16
3
,求經(jīng)過D、E兩點的直線解析式及經(jīng)過點D的反比例函數(shù)的解析式,并判斷△AOE與△AOD是否相似.
(3)若點M在平面直角坐標系內(nèi),則在直線AB上是否存在點F,使以A、C、F、M為頂點的四邊形為菱形?若存在,直接寫出F點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

當(dāng)x=
 
時,代數(shù)式5-2x的值是-7.

查看答案和解析>>

同步練習(xí)冊答案