【題目】一種拉桿式旅行箱的示意圖如圖所示,箱體長AB=50cm,拉桿最大伸長距離BC=35cm,(點(diǎn)A、B、C在同一條直線上),在箱體的底端裝有一圓形滾輪⊙A,⊙A與水平地面切于點(diǎn)D,AE∥DN,某一時刻,點(diǎn)B距離水平面38cm,點(diǎn)C距離水平面59cm.
(1)求圓形滾輪的半徑AD的長;
(2)當(dāng)人的手自然下垂拉旅行箱時,人感覺較為舒服,已知某人的手自然下垂在點(diǎn)C處且拉桿達(dá)到最大延伸距離時,點(diǎn)C距離水平地面73.5cm,求此時拉桿箱與水平面AE所成角∠CAE的大。ň_到1°,參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).
【答案】
(1)解:作BH⊥AF于點(diǎn)G,交DM于點(diǎn)H.
則BG∥CF,△ABG∽△ACF.
設(shè)圓形滾輪的半徑AD的長是xcm.
則 = ,即 = ,
解得:x=8.
則圓形滾輪的半徑AD的長是8cm
(2)解:CF=73.5﹣8=65.5(m).
則sin∠CAF= = ≈0.77,
則∠CAF=50°
【解析】(1)作BH⊥AF于點(diǎn)G,交DM于點(diǎn)H,則△ABG∽△ACF,設(shè)圓形滾輪的半徑AD的長是xcm,根據(jù)相似三角形的對應(yīng)邊的比相等,即可列方程求得x的值;(2)求得CF的長,然后在直角△ACF中,求得sin∠CAF,即可求得角的度數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線C1: 與C2:y=x2+2mx+n具有下列特征:①都與x軸有交點(diǎn);②與y軸相交于同一點(diǎn).
(1)求m,n的值;
(2)試寫出x為何值時,y1>y2?
(3)試描述拋物線C1通過怎樣的變換得到拋物線C2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對角線OB,AC相交于點(diǎn)D,且BE∥AC,AE∥OB,
(1)求證:四邊形AEBD是菱形;
(2)如果OA=3,OC=2,求出經(jīng)過點(diǎn)E的反比例函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明隨機(jī)調(diào)查了若干市民租用公共自行車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖。請根據(jù)圖中信息,解答下列問題:
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922393511583744/1923977001213952/STEM/d5900c7cb9b84a9a89aefef7d82bcf93.png]
(1)這次被調(diào)查的總?cè)藬?shù)是多少?
(2)試求表示A組的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計圖;
(3)如果騎自行車的平均速度為12km/h,請估算,在租用公共自行車的市民中,騎車路程不超過6km的人數(shù)所占的百分比。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分)某商家預(yù)測一種應(yīng)季襯衫能暢銷市場,就用13200元購進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)量的2倍,但單價貴了10元.
(1)該商家購進(jìn)的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標(biāo)價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)求證:BE=CF;
(2)如果AB=8,AC=6,求AE、BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,∠AOD=120°,FO⊥OD,OE平分∠BOD.
(1)求∠EOF的度數(shù);
(2)試說明OB平分∠EOF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx﹣1的圖象經(jīng)過點(diǎn)P,且y的值隨x值的增大而增大,則點(diǎn)P的坐標(biāo)可以為( 。
A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com